ECE 340 Lecture 1 Semiconductor Electronics

Spring 2022 10:00-10:50am Professor Umberto Ravaioli Department of Electrical and Computer Engineering 2062 ECE Building

Introductory Lecture

- Background and Motivation
- Course Purpose & Objectives
- Introduction to Semiconductor Electronics

Background and Motivation

Electronics beginnings – 1

- **1875-1883** The "Edison effect" in incandescent bulb with an additional filament is discovered but not understood
- 1895 Guglielmo Marconi invents wireless telegraph
- **1897** Joseph Thomson discovers the electron
- 1902 Reginald Fessenden invents amplitude modulation (AM) for telephone; 1906 first AM radio transmission
- **1904** John Fleming realizes the vacuum tube diode (using the Edison effect)
- **1905** Einstein explains thermionic emission
- **1912** Lee de Forest invents Vacuum Tube Triode amplifier
- **1919** Edwin Armstrong invents the superheterodyne radio receiver
- **1920** Westinghouse starts KDKA commercial radio station in Pittsburgh

Electronics beginnings – 2

- **1923** Vladimir Zworykin invents television
- 1926 Transatlantic telephone service between London and New York
- **1932** Guglielmo Marconi realizes first microwave telephone link, between the Vatican and the Pope's Summer residence
- 1933 Edwin Armstrong invents frequency modulation (FM)
- 1935 Regular television transmissions begin in Germany, followed by England (1936) and USA (1939)
- **1935** Robert Watson-Watt invents the Radar
- **1938** Alec Reeves invents Pulse Code Modulation (PCM)

Solid State was working only in detectors

- **1874-1899** Karl Braun studied asymmetric conduction in various sulfide crystals with a metal point-contact (wire car whisker) and patented a device in **1906**
- **1901** Jagadish Bose patents a detector made with PbS galena crystal and a metal point-contact (considered the first patent on a semiconductor device)
- **1902** Greenleaf Pickard discovers rectification of radio waves with a crystal detector and patents a silicon point-contact rectifier in **1906**
- **1931** Nevill Mott and Walter Schottky develop theories for rectification effects in metal-semiconductor junctions, improved by Hans Bethe in **1942**

Solid State was not working in amplifiers

The first attempts were based on the "field-effect"

- **1926** Julius Lilienfeld files concept patent for a threeelectrode amplifying device based on the semiconducting properties of copper sulfide
- **1934** Oskar Heil files a patent for controlling current flow in semiconductor via capacitive coupling of an electrode
- **1938** Robert Pohl and Rudolph Hilsch reported amplification at 1Hz with a potassium bromide three-terminal structure but leading to no practical device
- 1939 and later in 1945 William Shockley attempts to develop a solid-state amplifier with an oxide gate in a field-effect structure

All these early attempts were unsuccessful

Why not Vacuum tubes?

- Vacuum Tube Triode
 - Hot cathode needs warm-up
 - Bad Reliability
 - Not amenable to complex systems or integration
 - ENIAC, the first all-electronic computer (1945) had
 - 20,000 vacuum tubes
 - 7,200 crystal diodes
 - 1,500 relays
 - 70,000 resistors
 - 5,000,000 hand-soldered joints
 - 27 tons; over 1,800 feet²; 150kW; 5kHz

Discovery of Transistor by Bardeen and Brattain (1947)

Videos

https://www.youtube.com/watch?v=RdYHljZi7ys Engineerguy: "How the first transistor worked"

Extended PBS documentary "Transistorized": https://www.youtube.com/watch?v=U4XknGqr3Bo

Major Milestones in Semiconductor Devices and Integrated Circuits (Illinois ECE Connection)

1947: First Bipolar Transistor (Bardeen & Brattain)
1958: Invention of Integrated Circuits (Kilby & Noyce)
1960: First MOSFET (Kahng and Atalla)
1962: First LED and Semiconductor Laser (Hall, Holonyak)
1963: Invention of CMOS (Wanlass and Sah)
1968: Invention of DRAM (Dennard)
1971: First Microprocessor (Intel)

ECE Professor: 1951-1975

UIUC ECE B.S. '50, M.S. '51, Ph.D. '54 ECE Professor: 1963-2013 UIUC ECE B.S. '53 ECE Professor: 1962-1988

Kilby & Noyce: Integrated Circuit, 1958

Jack Kilby

http://www.mainbyte.com/ti99/history/history.html

Robert Noyce

First Practical LED: 1962

Motivation

Why is this course important?

Semiconductors Are Everywhere

2017 Worldwide Semiconductor Sales: \$408.7 Billion Larger Than Most Countries' GDP (Only ~27 Larger), Global Software \$406.6 Billion

Behind the Cloud

Supercomputer Optical Interconnects

Server Room

Data Center

LED Applications

LED Traffic Signals

Source: gelightingsolutions.com

LED General Lighting

Source: led-resource.com

LED Backlit TV

Provides color, resolution, and contrast. Contrast and image created by combining LED and LCD images.

Source: digitaltrends.com

Architectural Lighting

Source: vividleds.us

Automotive

Source: spie.org

High Efficiency Solar Cells

Course Purpose and Objectives

Course Purpose & Objectives

- Introduce key concepts in semiconductor materials
- Provide a basic understanding of p-n junctions
- Provide a basic understanding of light-emitting diodes and photodetectors
- Provide a basic understanding of field effect transistors
- Provide a basic understanding of bipolar junction transistors

Semiconductor Materials

Periodic Table of the Elements

Important Material Systems

Elemental Semiconductors

Silicon Germanium

Binary Semiconductors

 Column IV
 SiGe
 SiC
 Columns III & V
 InP
 GaAs
 GaN
 InAs

Columns II & VI ZnS, ZnSe, ZnO CdS, CdSe, CdTe

Important Material Systems

Ternary Semiconductors

AlGaAs

InGaAs

GaAsP

InGaN HgCdTe

ZnCdS

• Quaternary Semiconductors

InGaAsP

InAlGaAs

InGaAsP

InAlGaP

GalnNAs

Bandgap and Lattice Constant of Common Semiconductors

General Introduction to Semiconductor Electronics

Basic Equations for Semiconductor Device Operation

- The basic equations can be classified in four groups:
 - Maxwell's Equations: we will use mainly electrostatics (Poisson's equation)
 - Current-Density Equations: we will use the drift-diffusion approximation
 - Continuity Equations (conservation law)
 - Quantum Mechanics: we will refer to quantum mechanical principles but will not apply directly quantum models

Maxwell Equations for Homogeneous and Isotropic Materials

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

$$\nabla \times H = -\frac{\partial D}{\partial t} + J_{cond} = J_{total}$$

$$\nabla \bullet D = \rho(x, y, z)$$

$$\nabla \bullet B = 0$$

$$B = \mu_o H$$

$$D(r, t) = \int_{-\infty}^{t} \varepsilon_s(t - t') E(r, t') dt'$$

$$= \varepsilon E + P$$

E: electric field D: electric displacement B: magnetic field H: magnetizing field $\varepsilon_{\varepsilon}$: permittivity μ_o : permeability ρ : total electric charge density J_{cond} : the conduction current density *P*: polarization density ×: curl operator divergence operator

Electrostatics is what we use typically

Gauss Law $\nabla \cdot D = \rho$ In one dimension: $\mathcal{E}(x) = -\frac{d\mathcal{V}(x)}{dx}$ $D = \varepsilon \mathcal{E}$ $\mathcal{V}(x) = -\int \mathcal{E}(x) dx$

Electric field

 $\mathcal{E} = -\nabla \mathcal{V}$

Poisson Equation

$$\nabla \cdot D = \rho \rightarrow \nabla \cdot \mathcal{E} = \frac{\rho}{\varepsilon} \rightarrow \nabla^2 \mathcal{V} = -\frac{\rho}{\varepsilon}$$

$$\xrightarrow{1-D} \frac{d\mathcal{E}}{dx} = \frac{\rho}{\varepsilon} \rightarrow \frac{d^2 \mathcal{V}}{dx^2} = -\frac{\rho}{\varepsilon}$$

Current-Density Equations

- Two charge carriers
 - Electrons
 - Holes
- Drift caused by fields
- Diffusion by carrier concentration gradient

Continuity Equations

Conservation of charge

Schrodinger's Equation :

$$-\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi = -\frac{\hbar}{j}\frac{\partial\Psi}{\partial t}$$

(Kinetic Energy + Potential Energy = Total Energy)

Could be used to study the behavior of a single particle Not suitable for device simulation

 $\Psi(x, y, z, t) =$ wave function

The probability of finding a particle with wave function Ψ is $\Psi^* \Psi$ The particle is somewhere, so $\int_{-\infty}^{\infty} \Psi^* \Psi dx dy dz = 1$

Lattices and Crystal Structures

Types of Solids (1) Crystalline

Ki-Bum Kim, Seoul National University (2008)

HRTEM image of a silicon (Si) [110] crystallographic zone axis.

In the **CRYSTALLINE** state the atoms are ordered into a well-defined lattice that extends over very long distances

Types of Solids (2) Amorphous

Rajathi and Berchmans, www.nature.com/scientificreports (2019)

Glassy Palladium

In the **AMORPHOUS** state there is little or no evidence for long-range crystalline order

Types of Solids (3) Polycrystalline

Tomsk Polytechnic University (2017)

Polycrystalline diamond film

POLYCRYSTALLINE materials consist of small crystallites that are embedded in **AMORPHOUS** regions of material

Crystal Lattice

- Lattice: Periodic arrangement of a substance or "basis"
 - Atom, atomic pair, group of atoms, molecule, etc.
- <u>Unit Cell</u>: Contains a region which is representative of the lattice which can be regularly repeated to recreate the entire lattice
- **<u>Primitive Cell</u>**: The smallest unit cell that can be repeated in integral steps to produce the lattice
 - Contains a single lattice point
 - The Primitive Cell is a special form of the Unit Cell
- Primitive Vectors: a, b, c
 - (1 dimension) r = p a
 - (2 dimension) r = p a +q b
 - (3 dimension) r = p a +q b + r c
- <u>**Basis Vectors</u>**: Similar to primitive vectors, but used to replicate the lattice through the translation of a unit cell</u>

Simple Lattices and Unit Cells

From *Solid State Electronic Devices*, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee. ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.