ECE 340 Lecture 2 Semiconductor Electronics

Spring 2022
10:00-10:50am
Professor Umberto Ravaioli
Department of Electrical and Computer Engineering
2062 ECE Building

Today's Discussion

- Semiconductor Materials
- Lattices and Crystal Structures
- Homework \#1 will be assigned today and posted on Canvas (due on January 28)
- Reading Assignment:

Chapter 1 of Streetman \& Banerjee

Lattices and Crystal Structures

Types of Solids (1) Crystalline

Ki-Bum Kim, Seoul National University (2008)

HRTEM image of a silicon (Si) [110] crystallographic zone axis.

In the CRYSTALLINE state the atoms are ordered into a well-defined lattice that extends over very long distances

Types of Solids
 (2) Amorphous

Rajathi and Berchmans, www.nature.com/scientificreports (2019)

Glassy Palladium

In the AMORPHOUS state there is little or no evidence for long-range crystalline order

Types of Solids (3) Polycrystalline

Tomsk Polytechnic University (2017)

Polycrystalline diamond film

POLYCRYSTALLINE materials consist of small crystallites that are embedded in AMORPHOUS regions of material

Crystal Lattice - Definitions

- Lattice: Periodic arrangement of a substance or "basis"
- Atom, atomic pair, group of atoms, molecule, etc.
- Unit Cell: Contains a region which is representative of the lattice which can be regularly repeated to recreate the entire lattice
- Primitive Cell: The smallest unit cell that can be repeated in integral steps to produce the lattice
- Contains a single lattice point
- The Primitive Cell is a special form of the Unit Cell
- Primitive Vectors: $a, b, c \quad$ (define the cell)
- (1 dimension) $r=p a$
- (2 dimension) $r=p \mathbf{a}+q \mathbf{b}$
- (3 dimension) $\quad r=p \mathbf{a}+q \mathbf{b}+r \mathbf{c}$

translation vectors

- Basis Vectors: Similar to primitive vectors, but used to replicate the lattice through the translation of a unit cell

Simple Lattices and Unit Cells

From Solid State Electronic Devices, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee.

Simple Lattices and Unit Cells

Simple Lattices and Unit Cells

Primitive and Unit Cells are not unique. We can find equivalent geometries.

Possible primitive cells should have the same area (in 2D) or the same volume (in 3D).

Possible units cells can be of different size.

Simple Lattices and Unit Cells

Another possible unit cell
Unit Cell Q: How many atoms are inside it?

Primitive
Cell

Primitive
Vectors

Simple Lattices and Unit Cells

Another possible unit cell
Unit Cell Q: How many atoms are inside it?
1 at center $+1 / 3$ at 6 vertices $=3$

Primitive
Cell

Primitive
Vectors

Simple Lattices and Unit Cells

A formal way to find a primitive cell

Simple Lattices and Unit Cells

2) Bisect the segments between F^{\prime} Unit Cell and all the coordinated nodes

Simple Lattices and Unit Cells

Unit Cell "Wigner-Seitz" primitive cell

Primitive
Vectors

Simple Lattices and Unit Cells

3) The new primitive cell will cover Unit Cell the whole crystal by replication

Other Important Definitions

- Lattice Constant: distance along the edge of a cubic unit cell ("a" in examples that follow)

NOTE: The lattice constant is NOT necessarily the distance between nearest neighbor atoms (bond length).

Cubic Crystal Structures

- primitive vectors are equal in all three dimensions.
- The balls represent the lattice points.
$a=$ lattice constant

$$
\begin{aligned}
& \mathbf{a}_{1}=a \hat{\mathbf{x}} \\
& \mathbf{a}_{2}=a \hat{\mathbf{y}}
\end{aligned}
$$

The only element with simple $\mathbf{a}_{3}=a \hat{\mathbf{z}}$

Cubic Crystal Structures

unit cell

NaCl has a cubic structure but it has two elements (more complicated)

Body-Centered Cubic Crystal Structure

- Same as simple cubic but with an additional atom at the center of the cell.
- One set of possible primitive lattice vectors

$$
\begin{aligned}
& \mathbf{a}_{1}=\frac{a}{2}[\hat{\mathbf{x}}+\hat{\mathbf{y}}-\hat{\mathbf{z}}] \\
& \mathbf{a}_{2}=\frac{a}{2}[-\hat{\mathbf{x}}+\hat{\mathbf{y}}+\hat{\mathbf{z}}] \\
& \mathbf{a}_{3}=\frac{a}{2}[\hat{\mathbf{x}}-\hat{\mathbf{y}}+\hat{\mathbf{z}}]
\end{aligned}
$$

Body-Centered Cubic Crystal Structure

Face-Centered Cubic Crystal Structure

- Examine the face-centered cubic lattice (fcc):
- This is formed by adding an additional atom in the center of each face of the simple cubic configuration.
- This is the most important configuration we will consider.
- The primitive vectors have been written again by using symmetry considerations.

$$
\begin{aligned}
& \mathbf{a}_{1}=\frac{a}{2}[\hat{\mathbf{x}}+\hat{\mathbf{y}}] \\
& \mathbf{a}_{2}=\frac{a}{2}[\hat{\mathbf{y}}+\hat{\mathbf{z}}] \\
& \mathbf{a}_{3}=\frac{a}{2}[\hat{\mathbf{z}}+\hat{\mathbf{x}}]
\end{aligned}
$$

Faced-Centered Cubic Crystal Structures

primitive cell

Cubic Crystal Structures

Atomic size from packing of spheres

Diamond Lattice

Two interpenetrating fcc lattices

BASIS

UNIT CELL

Miller indices

- For any direction one could define many different equivalent planes.
- For instance, consider the different equivalent crystal planes in a cubic lattice.

Miller indices

We can classify crystal planes through the use of Miller Indices.

1. Start with any arbitrary point in the crystal lattice.
2. Take the three primitive lattice vectors as axes.
3. Next we locate the intercepts of the desired plane with these coordinate axes.
4. Finally, we take the reciprocal of the intercepts and multiply each of these by the smallest factor required to convert them all to integers.

- Indices which have no intercept have a Miller Index of zero.

Miller indices

TO CONVERT THE RECIPROCALS TO INTEGERS WE NEED TO MULTIPLY BY A FACTOR OF SIX THIS YIELDS MILLER INDICES (233)

Miller indices

- Since we chose the origin arbitrarily when we began, Miller indices define a family of parallel planes.
- To denote crystal planes with the same symmetry, we use $\{\mathrm{hkl}$ \}.
- " h " is the x -axis intercept inverse, " k " is the y -axis intercept inverse, and " 1 " is the z -axis intercept inverse .

All three planes shown here are related by simple rotations, thus they represent $\{100\}$ family.

Miller indices

Miller indices

Miller indices

A crystal plane:
(hkl)

Family of equivalent planes:
\{hkl\}

Crystal direction:
[hkl]
(normal to plane (hkl) in a cubic lattice)

Silicon

Let's get to know Silicon better (1)

- How many atoms in the unit cell?
- Let's look at the FCC lattice first

Let's get to know Silicon better (1)

- How many atoms in the unit cell?
- Let's look at the FCC lattice first
- 4 ATOMS PER CELL

- Now, add the second sub-lattice of the diamond lattice

Let's get to know Silicon better (1)

- How many atoms in the unit cell?
- Let's look at the FCC lattice first
- 4 ATOMS PER CELL

- Now, add the second sub-lattice of the diamond lattice
- 8 ATOMS PER CELL

Let's get to know Silicon better (1)

Let's get to know Silicon better (2)

-What is the distance between nearest neighbors?

Let's get to know Silicon better (2)

-What is the distance between nearest neighbors?

Second atom in basis is offset by (a/4, a/4, a/4)
Diagonal of cube with side a/4

$$
d=\frac{\sqrt{3} a}{4}=\frac{1.732 \times 5.43}{4}=2.35 \AA
$$

Let's get to know Silicon better (3)

- What is the packing fraction of Silicon?

Let's get to know Silicon better (3)

-What is the packing fraction of Silicon?
Volume of
unit cell $=a^{3}$
$=160.1 \AA^{3}$
Volume of atom
(assume a sphere)
$\frac{4}{3} \pi\left(\frac{d}{2}\right)^{3}=6.8 \AA^{3}$
Packing fraction $=(8 \times 6.8) / 160.1=0.34=34 \%$

Let's get to know Silicon better (4)

- What is the packing fraction of a simple fcc lattice?
(remember: 4 atoms per unit cell)

Let's get to know Silicon better (4)

- What is the packing fraction of a simple fcc lattice? (remember: 4 atoms per unit cell)

Volume of unit cell $=a^{3}$
Nearest neighbor distance $=$ $d=\frac{a}{2} \sqrt{2}$
Volume of atom
$\frac{4}{3} \pi\left(\frac{a}{4} \sqrt{2}\right)^{3}=0.185 a^{3}$

Packing fraction $=(4 \times 0.185) a^{3} / a^{3}=0.74=74 \%$ Interesting... that's more than twice than for diamond lattice.

Packing fractions for cubic lattices

- Face-Centered Cubic

$$
\sqrt{2} \frac{\pi}{6}=0.74
$$

- Body-Centered Cubic

$$
\sqrt{3} \frac{\pi}{8}=0.68
$$

- Simple Cubic

$$
\frac{\pi}{6}=0.52
$$

- Diamond Lattice

$$
\sqrt{3} \frac{\pi}{16}=0.34
$$

Let's get to know Silicon better (5)

- What is the areal density of the (100) plane?

Areal Density =
= \# Atoms on face/ Area face =

$=\left[\left(4 \times \frac{1}{8}+\frac{1}{2}\right)_{\substack{\text { above } \\ \text { surface }}}+\left(4 \times \frac{1}{8}+\frac{1}{2}\right)_{\substack{\text { below } \\ \text { surface }}}\right] \frac{1}{a^{2}}=2 / a^{2}$
$=6.78 \times 10^{18} \mathrm{~m}^{-2}=6.78 \times 10^{14} \mathrm{~cm}^{-2}$

Podcasts on the elements

- Do you want to know more about Silicon while relaxing?
- BBC Radio 4 program (28 minutes):
https://www.bbc.co.uk/sounds/play/b08rfh05
- Here is the download page for all BBC podcasts on the Elements: https://www.bbc.co.uk/programmes/p01rcrn6/episodes/downloads
- Suggested ones directly pertinent to the class:

Silicon - chips https://www.bbc.co.uk/programmes/p02rnxxh
Silicon-solar https://www.bbc.co.uk/programmes/p02rnxvm
Germanium https://www.bbc.co.uk/programmes/p03mrtq0
Gallium and Indium https://www.bbc.co.uk/programmes/p02ssjnx

Compound Semiconductors

- Many compound semiconductors such as Gallium Arsenide (GaAs) exhibit the zincblende crystal structure.
-The atomic configuration is the same as diamond.

Another example: Wurtzite Structure

Hoang et al. (2013)

Adapted from Wikipedia, "Wurtzite"

Important Material Systems

Binary substrates

