ECE 340 Lecture 2 Semiconductor Electronics

Spring 2022 10:00-10:50am Professor Umberto Ravaioli Department of Electrical and Computer Engineering 2062 ECE Building

Today's Discussion

- Semiconductor Materials
- Lattices and Crystal Structures

- Homework #1 will be assigned today and posted on Canvas (due on January 28)
- Reading Assignment:

Chapter 1 of Streetman & Banerjee

Lattices and Crystal Structures

Types of Solids (1) Crystalline

Ki-Bum Kim, Seoul National University (2008)

HRTEM image of a silicon (Si) [110] crystallographic zone axis.

In the **CRYSTALLINE** state the atoms are ordered into a well-defined lattice that extends over very long distances

Types of Solids (2) Amorphous

Rajathi and Berchmans, www.nature.com/scientificreports (2019)

Glassy Palladium

In the **AMORPHOUS** state there is little or no evidence for long-range crystalline order

Types of Solids (3) Polycrystalline

Tomsk Polytechnic University (2017)

Polycrystalline diamond film

POLYCRYSTALLINE materials consist of small crystallites that are embedded in **AMORPHOUS** regions of material

Crystal Lattice – Definitions

- Lattice: Periodic arrangement of a substance or "basis"
 - Atom, atomic pair, group of atoms, molecule, etc.
- <u>Unit Cell</u>: Contains a region which is representative of the lattice which can be regularly repeated to recreate the entire lattice
- **<u>Primitive Cell</u>**: The smallest unit cell that can be repeated in integral steps to produce the lattice
 - Contains a single lattice point
 - The Primitive Cell is a special form of the Unit Cell
- <u>Primitive Vectors:</u> a, b, c (define the cell)
 - (1 dimension) r = p a
 - (2 dimension) r = p a +q b
 - (3 dimension) r = p a + q b + r c

translation vectors

 <u>Basis Vectors</u>: Similar to primitive vectors, but used to replicate the lattice through the translation of a unit cell

From *Solid State Electronic Devices*, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee. ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Primitive and Unit Cells are not unique. We can find equivalent geometries.

Possible primitive cells should have the same area (in 2D) or the same volume (in 3D).

Possible units cells can be of different size.

Fr From *Solid State Electronic Devices*, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee. IS ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Other Important Definitions

• Lattice Constant: distance along the edge of a cubic unit cell ("a" in examples that follow)

NOTE: The lattice constant is **NOT** necessarily the distance between nearest neighbor atoms (bond length).

Cubic Crystal Structures

The only element with simple cubic crystal is α -polonium

- primitive vectors are equal in all three dimensions.
- The balls represent the lattice points.
- a = lattice constant

$$\mathbf{a}_1 = \alpha \hat{\mathbf{x}}$$
$$\mathbf{a}_2 = \alpha \hat{\mathbf{y}}$$
$$\mathbf{a}_3 = \alpha \hat{\mathbf{z}}$$

Cubic Crystal Structures

NaCI has a cubic structure but it has two elements (more complicated)

Body-Centered Cubic Crystal Structure

- Same as simple cubic but with an additional atom at the center of the cell.
- One set of possible
 primitive lattice vectors

$$\mathbf{a}_{1} = \frac{a}{2} [\hat{\mathbf{x}} + \hat{\mathbf{y}} - \hat{\mathbf{z}}]$$
$$\mathbf{a}_{2} = \frac{a}{2} [-\hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{z}}]$$
$$\mathbf{a}_{3} = \frac{a}{2} [\hat{\mathbf{x}} - \hat{\mathbf{y}} + \hat{\mathbf{z}}]$$

Body-Centered Cubic Crystal Structure

Face-Centered Cubic Crystal Structure

- Examine the face-centered cubic lattice (fcc):
 - This is formed by adding an additional atom in the center of each face of the simple cubic configuration.
 - This is the most important configuration we will consider.
 - The primitive vectors have been written again by using symmetry considerations.

$$\mathbf{a}_1 = \frac{a}{2} [\hat{\mathbf{x}} + \hat{\mathbf{y}}]$$
$$\mathbf{a}_2 = \frac{a}{2} [\hat{\mathbf{y}} + \hat{\mathbf{z}}]$$
$$\mathbf{a}_3 = \frac{a}{2} [\hat{\mathbf{z}} + \hat{\mathbf{x}}]$$

Faced-Centered Cubic Crystal Structures

Cubic Crystal Structures

24

Atomic size from packing of spheres

From *Solid State Electronic Devices*, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee. ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Diamond Lattice

Two interpenetrating fcc lattices

- For any direction one could define many different equivalent planes.
- For instance, consider the different equivalent crystal planes in a cubic **lattice**.

We can classify crystal planes through the use of **Miller Indices**.

- 1. Start with any arbitrary point in the crystal lattice.
- 2. Take the three primitive lattice vectors as axes.
- 3. Next we locate the intercepts of the desired plane with these coordinate axes.
- 4. Finally, we take the reciprocal of the intercepts and multiply each of these by the smallest factor required to convert them all to integers.
 - Indices which have no intercept have a Miller Index of zero.

A FACTOR OF SIX THIS YIELDS MILLER INDICES (233)

- Since we chose the origin arbitrarily when we began,
 Miller indices define a family of parallel planes.
- To denote crystal planes with the same symmetry, we use {hkl}.
- "h" is the x-axis intercept inverse, "k" is the y-axis intercept inverse, and "l" is the z-axis intercept inverse.

All three planes shown here are related by simple rotations, thus they represent {100} family.

A crystal plane:

(hkl)

Family of equivalent planes: {hkl}

Crystal direction: [hkl] (normal to plane (hkl) in a <u>cubic</u> lattice) Silicon

34

- How many atoms in the unit cell?
 - Let's look at the FCC lattice first

- How many atoms in the unit cell?
 - Let's look at the FCC lattice first
- 4 ATOMS PER CELL

 Now, add the second sub-lattice of the diamond lattice

- How many atoms in the unit cell?
 - Let's look at the FCC lattice first
- 4 ATOMS PER CELL

- Now, add the second sub-lattice of the diamond lattice
- 8 ATOMS PER CELL

• What is the distance between nearest neighbors?

What is the distance between nearest neighbors?

Lattice Constant a = 5.43 Å

Second atom in basis is offset by (a/4, a/4, a/4)

Diagonal of cube with side a/4

$$d = \frac{\sqrt{3}a}{4} = \frac{1.732 \times 5.43}{4} = 2.35\text{\AA}$$

• What is the packing fraction of Silicon?

Lattice Constant a = 5.43 Å

- What is the packing fraction of Silicon?
- Volume of unit cell = a^3 = 160.1 Å³

Lattice Constant a = 5.43 Å

- Volume of atom
- (assume a sphere) $\frac{4}{3}\pi \left(\frac{d}{2}\right)^3 = 6.8 \text{ Å}^3$

• What is the packing fraction of a simple fcc lattice? (remember: 4 atoms per unit cell)

 What is the packing fraction of a simple fcc lattice? (remember: 4 atoms per unit cell)

Volume of unit cell = a^3 Nearest neighbor distance = $d = \frac{a}{2}\sqrt{2}$ Volume of atom $\frac{4}{3}\pi \left(\frac{a}{4}\sqrt{2}\right)^3 = 0.185 a^3$ Packing fraction = $(4 \times 0.185) a^3 / a^3 = 0.74 = 74\%$ Interesting... that's more than twice than for diamond lattice.

Packing fractions for cubic lattices

Face-Centered Cubic

$$\sqrt{2}\frac{\pi}{6} = 0.74$$

Body-Centered Cubic

$$\sqrt{3}\frac{\pi}{8} = 0.68$$

• Simple Cubic

$$\frac{\pi}{6} = 0.52$$

• Diamond Lattice

$$\sqrt{3}\frac{\pi}{16} = 0.34$$

• What is the areal density of the (100) plane?

 $= 6.78 \times 10^{18} m^{-2} = 6.78 \times 10^{14} cm^{-2}$

Podcasts on the elements

- Do you want to know more about Silicon while relaxing?
 BBC Radio 4 program (28 minutes): <u>https://www.bbc.co.uk/sounds/play/b08rfh05</u>
- Here is the download page for all BBC podcasts on the Elements: https://www.bbc.co.uk/programmes/p01rcrn6/episodes/downloads
- Suggested ones directly pertinent to the class:
 Silicon chips https://www.bbc.co.uk/programmes/p02rnxxh
 Silicon solar https://www.bbc.co.uk/programmes/p02rnxvm
 Germanium https://www.bbc.co.uk/programmes/p03mrtq0
 Gallium and Indium https://www.bbc.co.uk/programmes/p02ssjnx

Compound Semiconductors

- Many compound semiconductors such as Gallium Arsenide (GaAs) exhibit the zincblende crystal structure.
 - The atomic configuration is the same as diamond.

Another example: Wurtzite Structure

Hoang et al. (2013) C N u Ga a

Adapted from Wikipedia, "Wurtzite"

49

Important Material Systems

