ECE 340 Lecture 4 Semiconductor Electronics

Spring 2022
10:00-10:50am
Professor Umberto Ravaioli
Department of Electrical and Computer Engineering
2062 ECE Building

Today's Discussion

- Crystal States
- Types of Bonding
- Insulators, Metals, and Semiconductors
- Band structure
- Direct and Indirect Band Gap
- Electrons and Holes

Crystal Bonding

- Each atom shares bonds with 4 other atoms.
- Silicon bonds are covalent, but compound semiconductors have a mix of ionic and covalent bonds.

When silicon atoms COMBINE to form a crystal the s - and p - orbitals HYBRIDIZE to form so-called $s p^{3}$ ORBITALS that are mixtures of the s - and p-orbitals.

s-ORBITAL

p-ORBITAL

$s p^{3}$-ORBITAL

Crystal Bonding

Bring atoms together, the wavefunctions begin to overlap.

Energy Band Formation

IN A SINGLE ATOM ELECTRONS ARE TRAPPED IN A POTENTIAL WELL

WHEN MANY ATOMS COMBINE AND FORM A CRYSTAL THE ATOMIC POTENTIALS OVERLAP GIVING RISE TO A PERIODIC VARIATION

Energy Band Formation

surface

Energy Band Formation

From Solid State Electronic Devices, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee. ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Gedanken Experiment

Imagine you start with $a \gg$ and then shrink down to exact size

Energy Bands Formation

Silicon $-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
Relative spacing of atoms

Atomic \#
$Z=14$
$\mathrm{N}=$ atoms in crystal

From Solid State Electronic Devices, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee.

ATOMS ARE FAR AWAY FROM EACH OTHER AND DO NOT INTERACT

Silicon $-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
Relative spacing of atoms

Atomic \#
$Z=14$
$\mathrm{N}=$ atoms in crystal

From Solid State Electronic Devices, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee.

ATOMS START INTERACTING - BONDING \& ANTIBONDING STATES START FORMING

Relative spacing ff atoms

Silicon $-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2} \quad \mathbf{2}$ states each level

Atomic \#
$Z=14$
$\mathrm{N}=$ atoms in crystal

From Solid State Electronic Devices, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee.

STRONGER INTERACTION - sp³ ORBITAL HYBRIDIZATION STARTS

Relative spacing of atoms

Silicon $-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
2 states each level
Atomic \#
$Z=14$
$\mathrm{N}=$ atoms in crystal

From Solid State Electronic Devices, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee.

STABLE CRYSTAL CONFIGURATION REACHED - COVALENT BONDING VALENCE AND CONDUCTION BANDS WITH BAND GAP ARE FORMED

Relative spacing of atoms
Silicon $-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2} \quad 2$ states each level

Atomic \#
$Z=14$
$\mathrm{N}=$ atoms in crystal

From Solid State Electronic Devices, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee.

Energy Bands Formation

 ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Energy Band Formation

surface

space coordinate

Periodic Table of the Elements

| | 1 | 2 | 3 | 4 | 5 | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | \||| | IV | V | VI | 17 | 18 |
| :---: |
| 1 | $\stackrel{1}{\mathrm{H}}$
 $\underset{\substack{\text { Hydrosen } \\ 1 \\ 1}}{ }$ | | C | Solid | | | | | Metals | | | Nonme | etals | | $\sqrt{ }$ | | | | |
| 2 | $\underbrace{\mathrm{Li}}_{\substack{\text { Litium } \\ \text { Lisi }}}$ | Be
 $\substack{\text { Beplilium } \\ \text { a. } 0.12182}$ | | Liquid
 Gas | | | $\begin{aligned} & \stackrel{\rightharpoonup}{\hat{\hat{N}}} \\ & \underline{\underline{\omega}} \\ & \stackrel{\rightharpoonup}{\bar{\omega}} \end{aligned}$ | | Lanthanoids | | | | $\begin{aligned} & \text { z } \\ & \frac{\square}{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | B | | | | | 10
 Ne
 Nen
 20.
 187 |
| 3 | ${ }^{11} \mathrm{Na}$
 Sadium
 223989298 | | | Unknown | | | $\stackrel{\stackrel{\omega}{\omega}}{\omega}$ | | Actinoids | | $\frac{\stackrel{\rightharpoonup}{0}}{0}$ | | | 13 AI Aluminium 28.9815396 | | $\begin{aligned} & 15 \\ & \mathbf{P} \end{aligned}$ | $\begin{aligned} & 16 \\ & \mathrm{~S} \\ & \text { Sutur } \\ & \hline 220085 \\ & \hline \end{aligned}$ | $\begin{aligned} & 17 \\ & \mathrm{Cl} \\ & \text { Clatione } \\ & 35453 \end{aligned}$ | $\begin{aligned} & 18 \\ & \mathrm{Ar} \\ & \text { An } \\ & \text { angn } \\ & \hline 1948 \end{aligned}$ |
| 4 | $\stackrel{\substack{\text { Potassium } \\ 390.093 \\ \hline}}{19}$ | | | | $\left\lvert\, \begin{aligned} & 23 \\ & \mathbf{V} \\ & \mathbf{V} \text { Vandum } \\ & 50.9415 \end{aligned}\right.$ | | | | | | 28 Ni
 Noxel
 58.6934 | | | | | | | | 36
 Kr
 Kypuen
 83.398 |
| 5 | | | \square | | $\begin{array}{\|l\|} \hline 41 \\ \text { Nb } \\ \text { Nobium } \\ \text { S20038 } \end{array}$ | | | | \square | | | | | $\begin{aligned} & 49 \\ & \text { In } \\ & \text { Indium } \\ & \text { In } 14.818 \end{aligned}$ | | | 52
 Te
 Tetrium
 127.00 | \square | 54
 Xe
 Xenen
 131233 |
| 6 | | 56
 Ba
 137.327 | 57-71 | | | 74 | W
 Hungsten 833.84 | | | | $\begin{aligned} & \hline 78 \\ & \mathrm{Pt} \\ & \text { Plation } \\ & \text { Paso } \\ & \hline \end{aligned}$ | | | $\begin{aligned} & 81 \\ & \mathrm{TI} \\ & \hline \end{aligned}$ | | 83 Bi Bismuth 208.98040 | 84 Po Po Poanium 2030.324 | 85
 At
 Astatine (209.9871) | 86 Rn Raston (220.016) |
| 7 | 87 Fr Francum (223) | | 89-103 | \square | 105 Db Dubhum (282) | | $\begin{aligned} & 106 \\ & \text { Sg } \begin{array}{l} \text { Sastosium } \end{array} . \end{aligned}$ | | | | $\begin{aligned} & 110 \\ & \text { Ds } \\ & \text { Des } \begin{array}{l} \text { anseatm } \\ \text { (271) } \end{array} \end{aligned}$ | | | $\begin{array}{\|l\|l} 113 \\ \text { Uut } \\ \text { Ununtium } \\ \text { (244) } \end{array}$ | \qquad | | | 117 Uus unreatam | |

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/

Ionic Bonding

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/

Ionic Bonding

ionic bonding
electron transferred from Na to Cl

Metallic Bonding

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/

Metallic Bonding

metallic bonding ions surrounded by free electrons

Covalent Bonding

	1	2	3	4	5	6	7	8	9	10	11	12		IV	V	VI	17	18
1	$\underset{\substack{1 \\ H \\ \text { Hydrosen } \\ 1.00794}}{ }$		C	Solid				Metals			Nonme	tals						$\begin{aligned} & 2 \\ & \mathrm{He} \\ & \substack{\text { Hetum } \\ 4.00202} \end{aligned}$
2	$\begin{aligned} & 3 \\ & \mathbf{L i} \\ & \hline \text { Litum } \\ & 0.941 \end{aligned}$		$\begin{aligned} & \hline \mathrm{Hg} \\ & \hline \mathrm{H} \\ & \hline \end{aligned}$	Liquid Gas		$\begin{aligned} & \text { 릋 } \\ & \underline{\underline{\text { en }}} \end{aligned}$		Lanthanoids		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \end{aligned}$		$\begin{aligned} & \text { Z } \\ & \frac{0}{\bar{\theta}} \\ & 0 \\ & \hline 0 \end{aligned}$			$\underset{\substack{\text { NTtrgen } \\ \text { 14.0087 }}}{\mathrm{N}}$			$\begin{aligned} & 10 \\ & \mathrm{Ne} \\ & \text { Neon } \\ & \text { 20.1797 } \end{aligned}$
3	11 Na $\substack{\text { sadum } \\ 223979928}$		Rf	Unknown		$\frac{\stackrel{\rightharpoonup}{6}}{\omega}$		Actinoids		$\frac{\stackrel{N}{\omega}}{}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & 13 \\ & \mathrm{Al} \end{aligned}$	$\begin{array}{\|l\|} \hline 14 \\ \mathrm{Si} \\ \text { siten } \\ 2800055 \\ \hline \end{array}$		$\begin{aligned} & 16 \\ & \text { S } \\ & \text { Sulur } \\ & 322085 \end{aligned}$	$\begin{array}{\|c} \hline 17 \\ \mathrm{Cl} \\ \text { Clomene } \\ 354.433 \\ \hline \end{array}$	$\begin{aligned} & 18 \\ & \mathrm{Ar} \\ & \substack{\text { Argn } \\ 39.948} \end{aligned}$
4		$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$ $\begin{aligned} & \text { Cabioum } \\ & \text { 40, } \end{aligned}$			$\begin{aligned} & 23 \\ & \mathbf{V} \\ & \begin{array}{l} \text { vanadum } \\ 50.9415 \end{array} \\ & \hline \end{aligned}$					28 Ni Nickel 58.6934					As Assenic	$\begin{aligned} & 34 \\ & \mathrm{Se} \\ & \text { Se } \end{aligned}$ 78.90		
5			$\begin{aligned} & 39 \\ & \mathbf{Y} \\ & \text { Ytrium } \\ & 88,5055 \end{aligned}$										49 In Intum 114.818	$\begin{array}{\|l} 50 \\ \mathrm{Sn} \\ \text { Tin } \\ \text { in } \\ \hline \end{array}$	\square			
6			57-71				75 Re Ren 1880207			$\begin{aligned} & \hline 78 \\ & \text { Pt } \\ & \begin{array}{l} \text { Platinum } \\ 195.084 \end{array} \\ & \hline \end{aligned}$			$\begin{aligned} & 81 \\ & \text { TI } \\ & \text { Trative } \\ & 204.383 \end{aligned}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \\ & \hline \begin{array}{l} \text { Pe8 } \\ 207.2 \end{array} \end{aligned}$	\square			
7			89-103	\square	$\begin{aligned} & 105 \\ & \mathrm{Db} \\ & \text { Dubum } \\ & \text { Oubrium } \end{aligned}$	106 Sg Segosorium (288)	107 Bh Borhium (284)			$\begin{aligned} & 110 \\ & \text { Ds } \\ & \text { Dessation } \\ & \text { (271) } \end{aligned}$							117 Uus Unvestam	$\begin{aligned} & 118 \\ & \text { Uuo } \\ & \text { Unurasur } \\ & \text { Unest } \end{aligned}$

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/

Covalent Bonding

Behavioral Classification

insulator
empty
\square

 $r_{1}+6+6+6+4+4+4+4+6$

filled

semiconductor

$$
\mathrm{T}=0 \mathrm{~K}
$$

Phase Space

Dynamics of electrons is studied in a generalized system of coordinates:

The kinetic energy state of the particle is given by a function

$$
E=f\left(k_{x}, k_{y}, k_{z}\right)
$$

This is usually known as "band structure".
As we have seen, energy in a crystal is a multi-valued function, so the band structure has many branches.

Classical particle

For a classical particle in free space there is only a single value of energy for each set of momentum coordinates.

$$
E=\frac{1}{2} m v^{2}
$$

Momentum is defined as

$$
p=m v \rightarrow E=\frac{p^{2}}{2 m}
$$

This is a simple parabolic relation

Quantum mechanical particle

For a quantum mechanical particle described by the Schrödinger equation inside a crystal, we define a new "crystal" momentum

$$
\langle p\rangle=\hbar k
$$

Here \boldsymbol{k} is the wave number of the wave describing the particle quantum-mechanically and for convenience it is used most often as momentum coordinate.

Quantum mechanical particle

We model the crystal as a new kind of "free space" where the particles obey a new energy-momentum relationship given by the band structure, containing the effects of the periodic atomic potentials.

Therefore, what we study is not an electron "particle" as in an isolated atom or in vacuum, but an electron "quasiparticle" which obeys special dynamic laws as dictated by the specific crystal in which it moves.

Simple examples of band structure

Lowest energy
solution in the
conduction band

Highest energy solution in the valence band

(a) Direct

(b) Indirect

Simple examples of band structure

Often it is sufficient to analyze conduction band behavior only in the region close to the minimum of the lowest energy branch, called a "valley".

In many cases the $\mathrm{E}(\mathrm{k})$ relations in the valleys are with good approximation parabolic

(a) Direct

(b) Indirect

Often it is sufficient to analyze valence band behavior only in the region close to the maximum of the highest energy branch, also called a "valley".

Simple examples of band structure

At finite temperature, electrons have the probability to acquire sufficient thermal energy to be excited to the conduction band.

An empty state is left behind, which essentially behaves like a positive "quasi-particle" (hole) moving when neighboring valence electron jump into that empty space leaving another one behind
(a) Direct

Direct or indirect?

Direct or indirect?

Direct or indirect?

Semiconductor Material Properties

		$\begin{gathered} E_{g} \\ (\mathrm{eV}) \\ \hline \end{gathered}$	$\begin{gathered} \mu_{n} \\ \left(\mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}\right) \end{gathered}$	$\begin{gathered} \mu_{\rho} \\ \left(\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}\right) \end{gathered}$	$\begin{gathered} m_{n}^{*} / m_{0} \\ \left(m_{1}, m_{t}\right) \end{gathered}$	$\begin{gathered} m_{p}^{*} / m_{o} \\ \left(m_{l h}, m_{h h}\right) \end{gathered}$	$a(\AA)$	ϵ_{r}	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Melting point $\left({ }^{\circ} \mathrm{C}\right)$	C (diamond)$E_{g}=5.5 e V$
Si	(i/D)	1.11	1350	480	0.98, 0.19	$0.16,0.49$	5.43	11.8	2.33	1415	
Ge	(i/D)	0.67	3900	1900	1.64, 0.082	0.04, 0.28	5.65	16	5.32	936	
$\mathrm{SiC}(\alpha)$	(i/W)	2.86	500	-	0.6	1.0	3.08	10.2	3.21	2830	SiO_{2}
AlP	(i/Z)	2.45	80	-	-	0.2, 0.63	5.46	9.8	2.40	2000	$E_{g}=9.0 \mathrm{eV}$
AlAs	(i/Z)	2.16	1200	420	2.0	$0.15,0.76$	5.66	10.9	3.60	1740	
AlSb	(i/Z)	1.6	200	300	0.12	0.98	6.14	11	4.26	1080	
GaP	(i/Z)	2.26	300	150	1.12, 0.22	0.14, 0.79	5.45	11.1	4.13	1467	
GaAs	(d/Z)	1.43	8500	400	0.067	0.074, 0.50	5.65	13.2	5.31	1238	
GaN	($d / Z, W$)	3.4	380	-	0.19	0.60	4.5	12.2	6.1	2530	
GaSb	(d/Z)	0.7	5000	1000	0.042	0.06, 0.23	6.09	15.7	5.61	712	
$\ln P$	(d/Z)	1.35	4000	100	0.077	0.089, 0.85	5.87	12.4	4.79	1070	
$\ln A s$	(d/Z)	0.36	22600	200	0.023	0.025, 0.41	6.06	14.6	5.67	943	
lnSb	(d/Z)	0.18	10^{5}	1700	0.014	0.015, 0.40	6.48	17.7	5.78	525	
ZnS	$(d / Z, W)$	3.6	180	10	0.28	-	5.409	8.9	4.09	1650*	
ZnSe	(d/Z)	2.7	600	28	0.14	0.60	5.671	9.2	5.65	1100^{*}	
ZnTe	(d/Z)	2.25	530	100	0.18	0.65	6.101	10.4	5.51	1238*	
CdS	($d / W, Z$)	2.42	250	15	0.21	0.80	4.137	8.9	4.82	1475	
CdSe	(d / W)	1.73	800	-	0.13	0.45	4.30	10.2	5.81	1258	
CdTe	(d/Z)	1.58	1050	100	0.10	0.37	6.482	10.2	6.20	1098	
PbS	(i/H)	0.37	575	200	0.22	0.29	5.936	17.0	7.6	1119	
PbSe	(i/H)	0.27	1500	1500	-	-	6.147	23.6	8.73	1081	
PbTe	(i/H)	0.29	6000	4000	0.17	0.20	6.452	30	8.16	925	

