ECE 340 Lecture 4 Semiconductor Electronics

Spring 2022 10:00-10:50am Professor Umberto Ravaioli Department of Electrical and Computer Engineering 2062 ECE Building

Today's Discussion

- Crystal States
- Types of Bonding
- Insulators, Metals, and Semiconductors
- Band structure
- Direct and Indirect Band Gap
- Electrons and Holes

Crystal Bonding

- Each atom shares bonds with 4 other atoms.
- Silicon bonds are covalent, but compound semiconductors have a mix of ionic and covalent bonds.

When silicon atoms COMBINE to form a crystal the s- and p- orbitals HYBRIDIZE to form so-called sp^3 ORBITALS that are mixtures of the s- and p-orbitals.

Crystal Bonding

Bring atoms together, the wavefunctions begin to overlap.

WHEN MANY ATOMS COMBINE AND FORM A CRYSTAL THE ATOMIC POTENTIALS OVERLAP GIVING RISE TO A PERIODIC VARIATION

From *Solid State Electronic Devices*, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee. ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Gedanken Experiment

Imagine you start with $a \gg$ and then shrink down to exact size

ATOMS ARE FAR AWAY FROM EACH OTHER AND DO NOT INTERACT

ATOMS START INTERACTING – BONDING & ANTIBONDING STATES START FORMING

STRONGER INTERACTION – sp³ ORBITAL HYBRIDIZATION STARTS

From *Solid State Electronic Devices*, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee. ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

STABLE CRYSTAL CONFIGURATION REACHED – COVALENT BONDING VALENCE AND CONDUCTION BANDS WITH BAND GAP ARE FORMED

Periodic Table of the Elements

Ionic Bonding

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/ 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Dy Ce Pr Eu Gd Er Tm Yb La Nd Pm Sm Tb Ho Lu Cerium Promethium Samarium Europiun Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lanthanum Praseodymium Neodym Lutetium 138.90547 140.118 140.90765 144.242 157.25 158.92535 162.500 164.93032 167.259 168.93421 173.054 174.9668 (145) 150.36 151.964 89 90 94 95 96 91 92 93 97 98 99 100 101 102 103 Th Pa Np Pu Am Cm Bk Cf Es Fm Ac U Md No Lr Protactinium 2 Curium Berkelium Californium Einsteinium Lawrencium Actinium Thorium Uranium Neptunium Plutonium Americium Fermium Mendelevium Nobelium (247) (227) 232 03806 231 03588 238 02891 (237) (244)(243)(247) (251)(257) (258)(259)(262)(252)

Ionic Bonding

ionic bonding electron transferred from Na to Cl

Metallic Bonding

232 03806

231 03588

238 02891

(237)

(244)

(243)

(247)

(247)

(251)

(252)

(257)

(258)

(259)

(262)

Metallic Bonding

metallic bonding ions surrounded by free electrons

Covalent Bonding

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Covalent Bonding

Behavioral Classification

T = 0 K

Phase Space

Dynamics of electrons is studied in a generalized system of coordinates:

The kinetic energy state of the particle is given by a function

$$E = f(k_x, k_y, k_z)$$

This is usually known as "band structure".

As we have seen, energy in a crystal is a multi-valued function, so the band structure has many branches.

Classical particle

For a classical particle in free space there is only a single value of energy for each set of momentum coordinates.

$$E = \frac{1}{2}mv^{2}$$
Momentum is defined as
$$p = mv \rightarrow E = \frac{p^{2}}{2m}$$
This is a simple parabolic relation
$$F = \frac{1}{2}mv^{2}$$

Quantum mechanical particle

For a quantum mechanical particle described by the Schrödinger equation inside a crystal, we define a new "crystal" momentum

$$\langle p \rangle = \hbar k$$

Here *k* is the wave number of the wave describing the particle quantum-mechanically and for convenience it is used most often as momentum coordinate.

Quantum mechanical particle

We model the crystal as a new kind of "free space" where the particles obey a new energy-momentum relationship given by the band structure, containing the effects of the periodic atomic potentials.

Therefore, what we study is not an electron "particle" as in an isolated atom or in vacuum, but an electron "quasiparticle" which obeys special dynamic laws as dictated by the specific crystal in which it moves.

Simple examples of band structure

(a) Direct

(b) Indirect

Simple examples of band structure

Often it is sufficient to analyze conduction band behavior only in the region close to the minimum of the lowest energy branch, called a "valley".

In many cases the E(k) relations in the valleys are with good approximation parabolic E_g

(a) Direct

(b) Indirect

Often it is sufficient to analyze valence band behavior only in the region close to the maximum of the highest energy branch, also called a "valley".

Simple examples of band structure

At finite temperature, electrons have the probability to acquire sufficient thermal energy to be excited to the conduction band.

An empty state is left behind, which essentially behaves like a positive "quasi-particle" (hole) moving when neighboring valence electron jump into that empty space leaving another one behind

(a) Direct

Direct or indirect?

Direct or indirect?

Direct or indirect?

Semiconductor Material Properties

						• .				Melting	
		E _g (eV)	μ_n (cm ² /V-s)	$\mu_{ ho}$ (cm ² /V-s)	m [*] _n /m _o (m _l ,m _t)	m [*] _p /m _o (m _{lh} ,m _{hh})	a (Å)	€ _r	Density (g/cm ³)	point (°C)	C (diamond)
Si	(i/D)	1.11	1350	480	0.98, 0.19	0.16, 0.49	5.43	11.8	2.33	1415	$E_g = 5.5 eV$
Ge	(i/D)	0.67	3900	1900	1.64, 0.082	0.04, 0.28	5.65	16	5.32	936	
SiC (α)	(i/W)	2.86	500	—	0.6	1.0	3.08	10.2	3.21	2830	SiO ₂
AIP	(i/Z)	2.45	80		—	0.2, 0.63	5.46	9.8	2.40	2000	$E_{a} = 9.0 eV$
AlAs	(i/Z)	2.16	1200	420	2.0	0.15, 0.76	5.66	10.9	3.60	1740	- <i>y</i>
AlSb	(i/Z)	1.6	200	300	0.12	0.98	6.14	11	4.26	1080	
GaP	(i/Z)	2.26	300	150	1.12, 0.22	0.14, 0.79	5.45	11.1	4.13	1467	
GaAs	(d/Z)	1.43	8500	400	0.067	0.074, 0.50	5.65	13.2	5.31	1238	
GaN	(d/Z, W)	3.4	380	-	0.19	0.60	4.5	12.2	6.1	2530	
GaSb	(d/Z)	0.7	5000	1000	0.042	0.06, 0.23	6.09	15.7	5.61	712	
InP	(d/Z)	1.35	4000	100	0.077	0.089, 0.85	5.87	12.4	4.79	1070	
InAs	(d/Z)	0.36	22600	200	0.023	0.025, 0.41	6.06	14.6	5.67	943	
InSb	$\left(\frac{d}{Z}\right)$	0.18	105	1700	0.014	0.015, 0.40	6.48	17.7	5.78	525	
ZnS	(d/Z, W)	3.6	180	10	0.28	—	5.409	8.9	4.09	1650*	
ZnSe	(d/Z)	2.7	600	28	0.14	0.60	5.671	9.2	5.65	1100*	
ZnTe	(d/Z)	2.25	530	100	0.18	0.65	6.101	10.4	5.51	1238*	
CdS	(d/W, Z)	2.42	250	15	0.21	0.80	4.137	8.9	4.82	1475	
CdSe	(d/W)	1.73	800	—	0.13	0.45	4.30	10.2	5.81	1258	
CdTe	(d/Z)	1.58	1050	100	0.10	0.37	6.482	10.2	6.20	1098	
PbS	(i/H)	0.37	575	200	0.22	0.29	5.936	17.0	7.6	1119	
PbSe	(i/H)	0.27	1500	1500	_	_	6.147	23.6	8.73	1081	
PbTe	(i/H)	0.29	6000	4000	0.17	0.20	6.452	30	8.16	925	

All values at 300 K.