# ECE 340 Lecture 5 Semiconductor Electronics

Spring 2022 10:00-10:50am Professor Umberto Ravaioli Department of Electrical and Computer Engineering 2062 ECE Building

## Today's Discussion

- Electrons and Holes
- Effective Mass
- Intrinsic Material
- Extrinsic Material

### **Phase Space**

Dynamics of electrons is studied in a generalized system of coordinates:



The kinetic energy state of the particle is given by a function

$$E = f(k_x, k_y, k_z)$$

This is usually known as "band structure".

As we have seen, energy in a crystal is a multi-valued function, so the band structure has many branches.

# **Classical particle**

For a classical particle in free space there is only a single value of energy for each set of momentum coordinates.

$$E = \frac{1}{2}mv^{2}$$
Momentum is defined as
$$p = mv \rightarrow E = \frac{p^{2}}{2m}$$
This is a simple parabolic relation
$$p$$

## **Quantum mechanical particle**

For a quantum mechanical particle described by the Schrödinger equation inside a crystal, we define a new "crystal" momentum

$$\langle p \rangle = \hbar k$$

Here *k* is the wave number of the wave describing the particle quantum-mechanically and for convenience it is used most often as momentum coordinate.

## **Quantum mechanical particle**

We model the crystal as a new kind of "free space" where the particles obey a new energy-momentum relationship given by the band structure, containing the effects of the periodic atomic potentials.

Therefore, what we study is not an electron "particle" as in an isolated atom or in vacuum, but an electron "quasiparticle" which obeys special dynamic laws as dictated by the specific crystal in which it moves.

# Simple examples of band structure



(a) Direct

(b) Indirect

# Simple examples of band structure

Often it is sufficient to analyze conduction band behavior only in the region close to the minimum of the lowest energy branch, called a "valley".

In many cases the E(k) relations in the valleys are with good approximation parabolic  $E_g$ 



(a) Direct

(b) Indirect

Often it is sufficient to analyze valence band behavior only in the region close to the maximum of the highest energy branch, also called a "valley".

# Simple examples of band structure



At finite temperature, electrons have the probability to acquire sufficient thermal energy to be excited to the conduction band.

An empty state is left behind, which essentially behaves like a positive "quasi-particle" (hole) moving when neighboring valence electron jump into that empty space leaving another one behind

(a) Direct

# **Direct or indirect?**



# **Direct or indirect?**



# **Direct or indirect?**



# **Semiconductor Material Properties**

|         |                            | F                            |                                |                             | m <sup>*</sup> "/m <sub>o</sub>                          | m* /m                                                                              |       |                | Donait                          | Melting       |                  |
|---------|----------------------------|------------------------------|--------------------------------|-----------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------|-------|----------------|---------------------------------|---------------|------------------|
|         |                            | <i>Е<sub>g</sub></i><br>(eV) | $\mu_n$ (cm <sup>2</sup> /V-s) | μ <sub>ρ</sub><br>(cm²/V-s) | m "/ m <sub>o</sub><br>(m <sub>l</sub> ,m <sub>t</sub> ) | m <sup>*</sup> <sub>p</sub> ∕m <sub>o</sub><br>(m <sub>lh</sub> ,m <sub>hh</sub> ) | a (Å) | € <sub>r</sub> | Density<br>(g/cm <sup>3</sup> ) | point<br>(°C) | C (diamon        |
| Si      | (i/D)                      | 1.11                         | 1350                           | 480                         | 0.98, 0.19                                               | 0.16, 0.49                                                                         | 5.43  | 11.8           | 2.33                            | 1415          | $E_g = 5.5e$     |
| Ge      | (i/D)                      | 0.67                         | 3900                           | 1900                        | 1.64, 0.082                                              | 0.04, 0.28                                                                         | 5.65  | 16             | 5.32                            | 936           |                  |
| SiC (α) | (i/W)                      | 2.86                         | 500                            | —                           | 0.6                                                      | 1.0                                                                                | 3.08  | 10.2           | 3.21                            | 2830          | SiO <sub>2</sub> |
| AIP     | (i/Z)                      | 2.45                         | 80                             |                             | _                                                        | 0.2, 0.63                                                                          | 5.46  | 9.8            | 2.40                            | 2000          | $E_{q} = 9.0e$   |
| AlAs    | (i/Z)                      | 2.16                         | 1200                           | 420                         | 2.0                                                      | 0.15, 0.76                                                                         | 5.66  | 10.9           | 3.60                            | 1740          | 29 1100          |
| AlSb    | (i/Z)                      | 1.6                          | 200                            | 300                         | 0.12                                                     | 0.98                                                                               | 6.14  | 11             | 4.26                            | 1080          |                  |
| GaP     | (i/Z)                      | 2.26                         | 300                            | 150                         | 1.12, 0.22                                               | 0.14, 0.79                                                                         | 5.45  | 11.1           | 4.13                            | 1467          |                  |
| GaAs    | (d/Z)                      | 1.43                         | 8500                           | 400                         | 0.067                                                    | 0.074, 0.50                                                                        | 5.65  | 13.2           | 5.31                            | 1238          |                  |
| GaN     | (d/Z, W)                   | 3.4                          | 380                            | _                           | 0.19                                                     | 0.60                                                                               | 4.5   | 12.2           | 6.1                             | 2530          |                  |
| GaSb    | (d/Z)                      | 0.7                          | 5000                           | 1000                        | 0.042                                                    | 0.06, 0.23                                                                         | 6.09  | 15.7           | 5.61                            | 712           |                  |
| InP     | (d/Z)                      | 1.35                         | 4000                           | 100                         | 0.077                                                    | 0.089, 0.85                                                                        | 5.87  | 12.4           | 4.79                            | 1070          |                  |
| InAs    | (d/Z)                      | 0.36                         | 22600                          | 200                         | 0.023                                                    | 0.025, 0.41                                                                        | 6.06  | 14.6           | 5.67                            | 943           |                  |
| InSb    | $\left(\frac{d}{Z}\right)$ | 0.18                         | 105                            | 1700                        | 0.014                                                    | 0.015, 0.40                                                                        | 6.48  | 17.7           | 5.78                            | 525           |                  |
| ZnS     | (d/Z, W)                   | 3.6                          | 180                            | 10                          | 0.28                                                     | _                                                                                  | 5.409 | 8.9            | 4.09                            | 1650*         |                  |
| ZnSe    | (d/Z)                      | 2.7                          | 600                            | 28                          | 0.14                                                     | 0.60                                                                               | 5.671 | 9.2            | 5.65                            | 1100*         |                  |
| ZnTe    | (d/Z)                      | 2.25                         | 530                            | 100                         | 0.18                                                     | 0.65                                                                               | 6.101 | 10.4           | 5.51                            | 1238*         |                  |
| CdS     | (d/W, Z)                   | 2.42                         | 250                            | 15                          | 0.21                                                     | 0.80                                                                               | 4.137 | 8.9            | 4.82                            | 1475          |                  |
| CdSe    | (d/W)                      | 1.73                         | 800                            |                             | 0.13                                                     | 0.45                                                                               | 4.30  | 10.2           | 5.81                            | 1258          |                  |
| CdTe    | (d/Z)                      | 1.58                         | 1050                           | 100                         | 0.10                                                     | 0.37                                                                               | 6.482 | 10.2           | 6.20                            | 1098          |                  |
| PbS     | (i/H)                      | 0.37                         | 575                            | 200                         | 0.22                                                     | 0.29                                                                               | 5.936 | 17.0           | 7.6                             | 1119          |                  |
| PbSe    | (i/H)                      | 0.27                         | 1500                           | 1500                        | _                                                        | _                                                                                  | 6.147 | 23.6           | 8.73                            | 1081          |                  |
| PbTe    | (i/H)                      | 0.29                         | 6000                           | 4000                        | 0.17                                                     | 0.20                                                                               | 6.452 | 30             | 8.16                            | 925           |                  |
|         |                            |                              |                                |                             |                                                          |                                                                                    |       |                |                                 |               |                  |

All values at 300 K.

## Vacuum tube



#### Semiconductor at T = 0K



Momentum space

Real space

#### Semiconductor at T > 0K



Momentum space

**Real space** 

#### Semiconductor at T > 0K



Momentum space

Real space

## **Current takes place in two bands**

In the valence band:  
Current Density 
$$J = (-q) \sum_{i}^{N} v_{i} - (-q) v_{j}$$
  
 $= 0 + qv_{j}$ 

The electrons in the valence band fill the empty state leaving another one behind as if the state is moving like a positive particle.

Therefore, a "quasi-particle" called "hole" can be used to model this kind of current.

The electron adds to the current density by moving in the opposite direction (same current direction as the hole since it has negative charge).

### **Effective mass**

Dynamics of the particles does not take place according to the classical mechanical laws as in free space, but it depends on the band structure  $E(\mathbf{k})$ .

However, the *bottom of the conduction band* and the *top of the valence band* are approximately parabolic in a range of energies.

In these conditions, particles still move according to a Netwon-like dynamics, as if possessing a different *mass* which depends on the curvature of the parabola.

$$F = -qE = \underbrace{m_n^*}_{\uparrow} \frac{dv}{dt}$$
  
electron effective mass

 $m_p^*$ hole effective mass is typically different

# Rules of thumb for band curvature

$$\frac{d^2 E}{dk^2} = \begin{array}{c} \text{Curvature of} \\ \text{the band} \end{array}$$

$$m^* = \hbar^2 \left(\frac{d^2 E}{dk^2}\right)^{-1}$$





Stronger curvature:

- Less energy states available
- Lighter effective mass

Gentler curvature:

- More energy states available
- Heavier effective mass

## Silicon band structure



# Valleys



# Silicon Equivalent Valleys



# **Germanium band structure**



# **Germanium Equivalent Valleys**



# **GaAs band structure**



#### **GaAs band structure**



# GaAs Equivalent Valleys ( $\Gamma$ & L)



# **Effective Mass is not "unique"**

The effective mass depends on the band curvature, therefore, it depends on spatial direction for a valley which is not spherical.

For some applications to evaluate material properties, one may use a mass averaged over the valleys and the directions (density of states mass).

In charge transport calculations one may use instead the appropriate average mass for a given direction (conductivity mass)

# **Semiconductor Material Properties**

| _       |                            |                              |                             |                             |                                            |                                                                                    |       |                |                                 |               |                  |
|---------|----------------------------|------------------------------|-----------------------------|-----------------------------|--------------------------------------------|------------------------------------------------------------------------------------|-------|----------------|---------------------------------|---------------|------------------|
|         |                            | _                            |                             |                             | • /                                        | • /                                                                                |       |                |                                 | Melting       |                  |
|         |                            | <i>Е<sub>g</sub></i><br>(eV) | μ <sub>n</sub><br>(cm²/V-s) | μ <sub>ρ</sub><br>(cm²/V-s) | m <sup>*</sup> n∕m <sub>o</sub><br>(m₁,m₁) | m <sup>*</sup> <sub>p</sub> ∕m <sub>o</sub><br>(m <sub>lh</sub> ,m <sub>hh</sub> ) | a (Å) | € <sub>r</sub> | Density<br>(g/cm <sup>3</sup> ) | point<br>(°C) | C (diamond       |
| Si      | (i/D)                      | 1.11                         | 1350                        | 480                         | 0.98, 0.19                                 | 0.16, 0.49                                                                         | 5.43  | 11.8           | 2.33                            | 1415          | $E_{q} = 5.5 eV$ |
| Ge      | (i/D)                      | 0.67                         | 3900                        | 1900                        | 1.64, 0.082                                | 0.04, 0.28                                                                         | 5.65  | 16             | 5.32                            | 936           | 3                |
| SiC (α) | (i/W)                      | 2.86                         | 500                         | —                           | 0.6                                        | 1.0                                                                                | 3.08  | 10.2           | 3.21                            | 2830          | SiO <sub>2</sub> |
| AIP     | (i/Z)                      | 2.45                         | 80                          |                             | _                                          | 0.2, 0.63                                                                          | 5.46  | 9.8            | 2.40                            | 2000          | $E_a = 9.0 eV$   |
| AlAs    | (i/Z)                      | 2.16                         | 1200                        | 420                         | 2.0                                        | 0.15, 0.76                                                                         | 5.66  | 10.9           | 3.60                            | 1740          | $L_g = 5.0$      |
| AlSb    | ( <i>i/Z</i> )             | 1.6                          | 200                         | 300                         | 0.12                                       | 0.98                                                                               | 6.14  | 11             | 4.26                            | 1080          |                  |
| GaP     | (i/Z)                      | 2.26                         | 300                         | 150                         | 1.12, 0.22                                 | 0.14, 0.79                                                                         | 5.45  | 11.1           | 4.13                            | 1467          |                  |
| GaAs    | (d/Z)                      | 1.43                         | 8500                        | 400                         | 0.067                                      | 0.074, 0.50                                                                        | 5.65  | 13.2           | 5.31                            | 1238          |                  |
| GaN     | (d/Z, W)                   | 3.4                          | 380                         | _                           | 0.19                                       | 0.60                                                                               | 4.5   | 12.2           | 6.1                             | 2530          |                  |
| GaSb    | (d/Z)                      | 0.7                          | 5000                        | 1000                        | 0.042                                      | 0.06, 0.23                                                                         | 6.09  | 15.7           | 5.61                            | 712           |                  |
| InP     | (d/Z)                      | 1.35                         | 4000                        | 100                         | 0.077                                      | 0.089, 0.85                                                                        | 5.87  | 12.4           | 4.79                            | 1070          |                  |
| InAs    | $\left(\frac{d}{Z}\right)$ | 0.36                         | 22600                       | 200                         | 0.023                                      | 0.025, 0.41                                                                        | 6.06  | 14.6           | 5.67                            | 943           |                  |
| InSb    | $\left(\frac{d}{Z}\right)$ | 0.18                         | 10 <sup>5</sup>             | 1700                        | 0.014                                      | 0.015, 0.40                                                                        | 6.48  | 17.7           | 5.78                            | 525           |                  |
| ZnS     | (d/Z, W)                   | 3.6                          | 180                         | 10                          | 0.28                                       | _                                                                                  | 5.409 | 8.9            | 4.09                            | 1650*         |                  |
| ZnSe    | (d/Z)                      | 2.7                          | 600                         | 28                          | 0.14                                       | 0.60                                                                               | 5.671 | 9.2            | 5.65                            | 1100*         |                  |
| ZnTe    | $\left(\frac{d}{Z}\right)$ | 2.25                         | 530                         | 100                         | 0.18                                       | 0.65                                                                               | 6.101 | 10.4           | 5.51                            | 1238*         |                  |
| CdS     | (d/W, Z)                   | 2.42                         | 250                         | 15                          | 0.21                                       | 0.80                                                                               | 4.137 | 8.9            | 4.82                            | 1475          |                  |
| CdSe    | (d/W)                      | 1.73                         | 800                         | —                           | 0.13                                       | 0.45                                                                               | 4.30  | 10.2           | 5.81                            | 1258          |                  |
| CdTe    | $\left(\frac{d}{Z}\right)$ | 1.58                         | 1050                        | 100                         | 0.10                                       | 0.37                                                                               | 6.482 | 10.2           | 6.20                            | 1098          |                  |
| PbS     | (i/H)                      | 0.37                         | 575                         | 200                         | 0.22                                       | 0.29                                                                               | 5.936 | 17.0           | 7.6                             | 1119          |                  |
| PbSe    | (i/H)                      | 0.27                         | 1500                        | 1500                        | _                                          | _                                                                                  | 6.147 | 23.6           | 8.73                            | 1081          |                  |
| PbTe    | (i/H)                      | 0.29                         | 6000                        | 4000                        | 0.17                                       | 0.20                                                                               | 6.452 | 30             | 8.16                            | 925           |                  |
|         |                            |                              |                             |                             |                                            |                                                                                    |       |                |                                 |               |                  |

All values at 300 K.

# Intrinsic Semiconductor

• A pure semiconductor is called "intrinsic"



 There are always as many electrons in the conduction band as holes in the valence band

# Intrinsic Semiconductor

The intrinsic concentration depends on temperature



Electron-hole generation rate  $G_0$ always balances the recombination rate  $R_0$ 

$$G_0 = R_0$$

Textbook uses  $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$ 

# **Extrinsic Semiconductor**

- Impurities are introduced to force the material to have more electrons than holes or vice versa
  - An atom with more than 4 valence electrons can donate electrons to the conduction band while becoming a fixed positively charged ion. This is called a **donor**.
  - An atom with less than 4 valence electrons can attract electrons from the valence band, creating holes and becoming a fixed negatively charged ion. This is called an **acceptor**.

# **Extrinsic Semiconductor**

- The process of introducing impurities in the semiconductor for the purpose of changing material properties is called "doping".
- The impurities introduced with this process are called "dopants".

- Dopants are more commonly added:
  - During growth of the crystal
  - By diffusion at high temperature
  - By ion implantation

# Diffusion (pre-deposition + drive-in)



# Ion implantation



Doping profile obtained by implantation at different energies

Diffusion process can follow to smooth out profile



# **Common Dopants for Silicon**





| 57 57                               | ř. | 58 28<br><b>Ce</b> 19                                       | ł | 59 <sup>2</sup><br><b>Pr</b> <sup>18</sup>        | 60 <sup>2</sup><br><b>Nd <sup>15</sup></b> | 61 <sup>2</sup><br><b>Pm</b> <sup>15</sup> / <sub>23</sub>            | 62 2<br>Sm 24                                                                |                                                                       | 64 28<br>64 28<br>64 25           | 65 <sup>2</sup>                   | ⊘dayah.co<br>66                                      | 67 <sup>2</sup><br>18                     | 68 <sup>2</sup><br>Er <sup>3</sup>                                                             | 69 <sup>2</sup>                                                                         | 18                                                                                             | 71<br><b>Lu</b>      |
|-------------------------------------|----|-------------------------------------------------------------|---|---------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|-----------------------------------|------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------|
| Lanthanum <sup>2</sup><br>138.90547 |    | Cerium 2<br>140.116                                         |   | Praseodymium <sup>2</sup><br>140.90785            | Neodymium <sup>2</sup><br>144.242          | Promethium <sup>2</sup><br>(145)                                      | Samarium <sup>2</sup><br>150.38                                              | Europium <sup>2</sup><br>151.964                                      | Gadolinium <sup>2</sup><br>157.25 | Terbium <sup>2</sup><br>158.92535 | Dysprosium <sup>2</sup><br>162.500                   | Holmium <sup>2</sup><br>164.93032         | Erbium <sup>2</sup><br>167.259                                                                 | Thulium <sup>2</sup><br>168.93421                                                       | Ytterbium <sup>2</sup><br>173.054                                                              | Lutetium<br>174.9668 |
| 89 30<br>Ac 32                      | 5  | 90 <sup>2</sup><br><b>Th</b> <sup>18</sup><br><sup>18</sup> |   | 91 <sup>2</sup><br>Pa <sup>18</sup> <sub>22</sub> | 92 2<br>U 32<br>21                         | 93 <sup>2</sup><br>Np <sup>18</sup><br><sup>18</sup><br><sup>22</sup> | 94 <sup>2</sup><br><b>Pu</b> <sup>18</sup><br><sup>18</sup><br><sup>22</sup> | 95 <sup>2</sup><br>Am <sup>18</sup><br><sup>18</sup><br><sup>25</sup> | 96 2<br>Cm 18<br>32<br>25         | 97 2<br>Bk 322<br>27              | 98 <sup>2</sup><br>Cf <sup>18</sup><br><sup>28</sup> | 99 <sup>2</sup><br>Es <sup>18</sup><br>29 | 100 <sup>2</sup><br><b>Fm</b> <sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>30</sup> | 101 <sup>2</sup><br>Md <sup>18</sup><br><sup>18</sup><br><sup>22</sup><br><sup>31</sup> | 102 <sup>2</sup><br><b>No</b> <sup>18</sup><br><sup>18</sup><br><sup>22</sup><br><sup>32</sup> | 103<br>Lr            |
| Actinium 2<br>(227)                 |    | Thorium 10<br>232.03806                                     |   | Protactinium 2<br>231.03588                       | Uranium 9<br>238.02891                     | Neptunium <sup>9</sup><br>(237)                                       | Plutonium 2<br>(244)                                                         | Americium 2<br>(243)                                                  | Curium 9<br>(247)                 | Berkelium 2<br>(247)              | Californium <sup>8</sup><br>(251)                    | Einsteinium <sup>8</sup><br>(252)         | Fermium 2<br>(257)                                                                             | Mendelevium 2<br>(258)                                                                  | Nobelium 2<br>(259)                                                                            | Lawrencium<br>(262)  |

# **Doping atoms**



#### **Donors and Acceptors**

Donors should create energy levels close to the conduction band Acceptors should create energy levels close to the valence band



p-type

#### n-type