ECE 340 Lecture 13 Semiconductor Electronics

Spring 2022 10:00-10:50am Professor Umberto Ravaioli Department of Electrical and Computer Engineering 2062 ECE Building

Today's Discussion

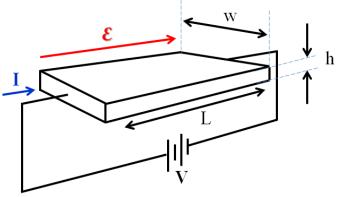
- Optical absorption
- Excess carrier generation
- Direct Recombination of Electrons and Holes
- Steady State Carrier Generation
- Photoconductive Devices
- Quasi-Fermi Level

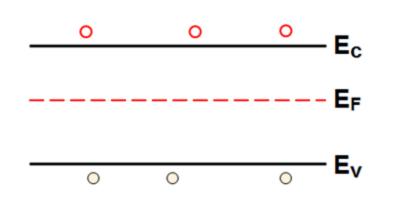
The key to many semiconductor devices

Generate charge carriers in excess of thermal equilibrium values.

Example: intrinsic Si

- T = 300 K
- $n = n_i$
- $p = p_i$



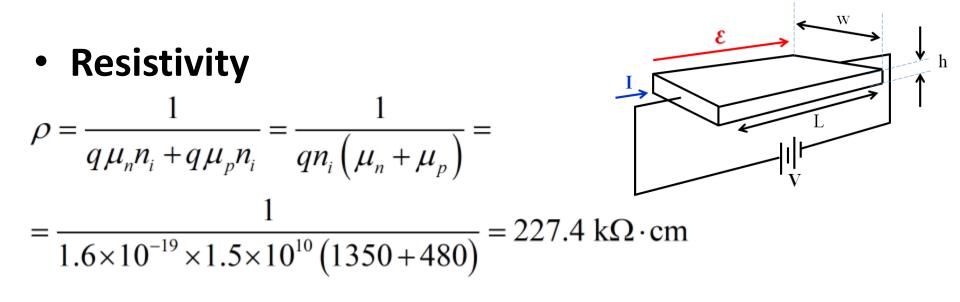


What happens if we connect a battery at the ends of a bar made of intrinsic Si? (assume ohmic contacts)

$$V = 10 V$$

L = 1.0 cm
A = h x w = 1.0 mm²

There is not much of a current



$$R = \rho \frac{L}{A} = 227.4 \times 10^3 \frac{1.0}{10^{-2}} = 22.74 \times 10^6 = 22.74 \text{ M}\Omega$$

$$I = \frac{V}{R} = \frac{10}{22.74 \times 10^6} = 0.44\,\mu\text{A}$$

Can we increase the current somehow (i.e. increase carrier concentration)?

Some possible ways

We already know at least two ways:

• Increase the temperature

• Introduce doping in the semiconductor to enhance free carriers (both imply increased scattering and lower mobility)

These modalities do not introduce "excess carriers" but rely on establishing a new equilibrium condition

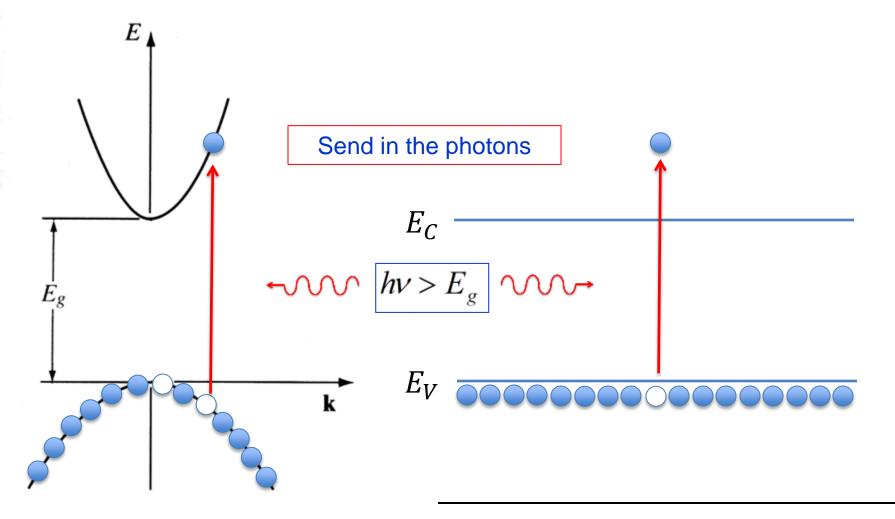
Shine EM waves (e.g., light) with photon Energy > Band gap

Field Effect: accumulate carriers with a "capacitive" structure

Design a structure that injects carriers from one region to another

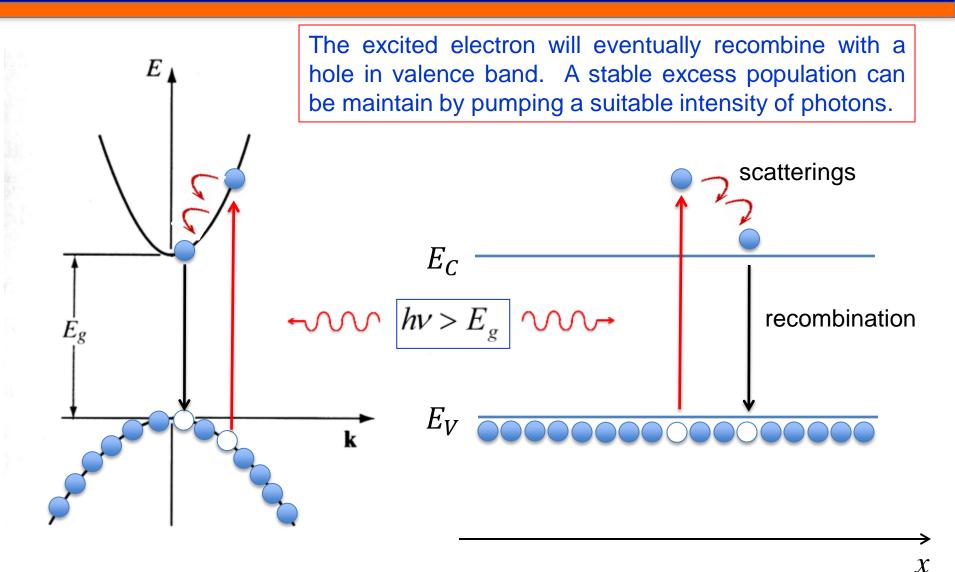
Design a structure that energizes free carriers to knock off a lot of electrons from the valence band (and corresponding hole creation) with an "avalanche" multiplication process (impact ionization)

Let's try light



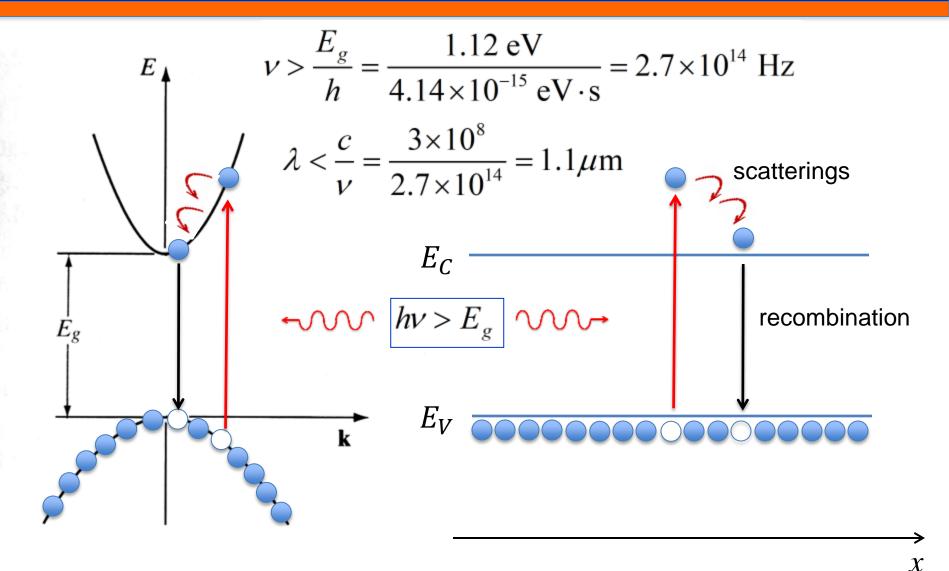
Momentum space

Let's try light



Momentum space

Let's try light



Momentum space

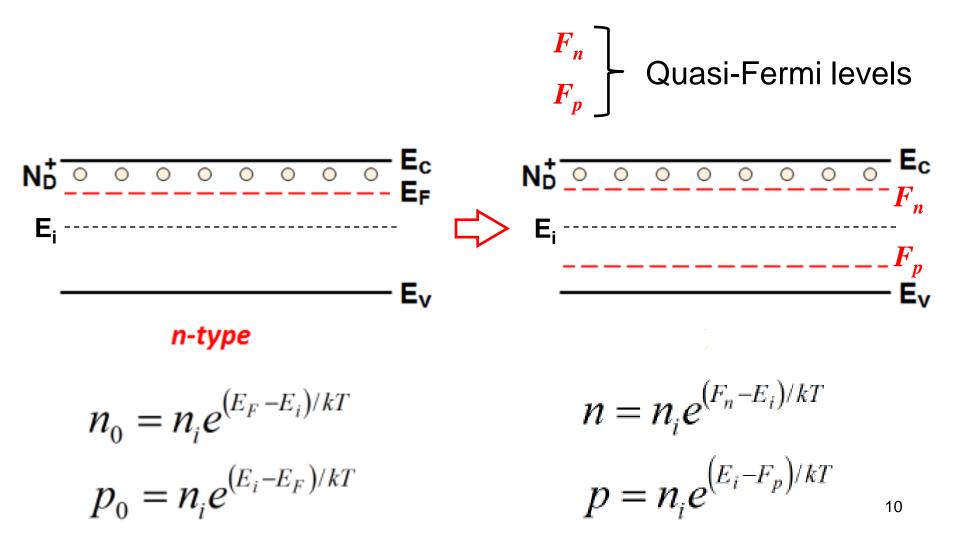
You can also use the handy formula

$\lambda_0 = \frac{1.24}{E_g[eV]} = [\mu m] = \frac{1240}{E_g[eV]}[nm]$

Keep in mind that this formula is for wavelength in vacuum

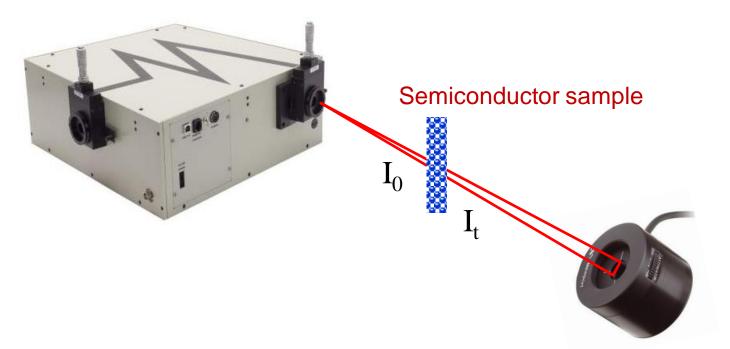
But what happens to the Fermi Level?

If we generate excess carriers so that $\Delta n = \Delta p > n_o, p_o$



Optical Absorption

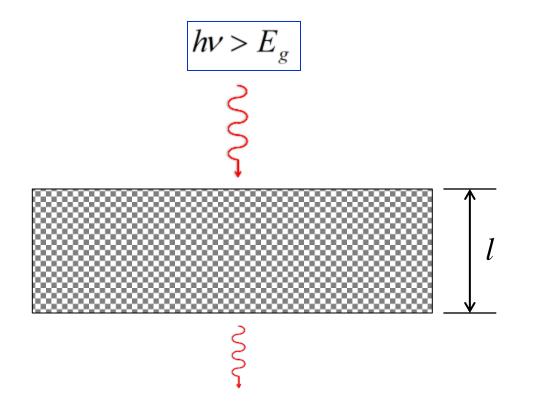
Newport CS260 Monochromator + wide spectrum lamp Select frequency with diffraction gratings



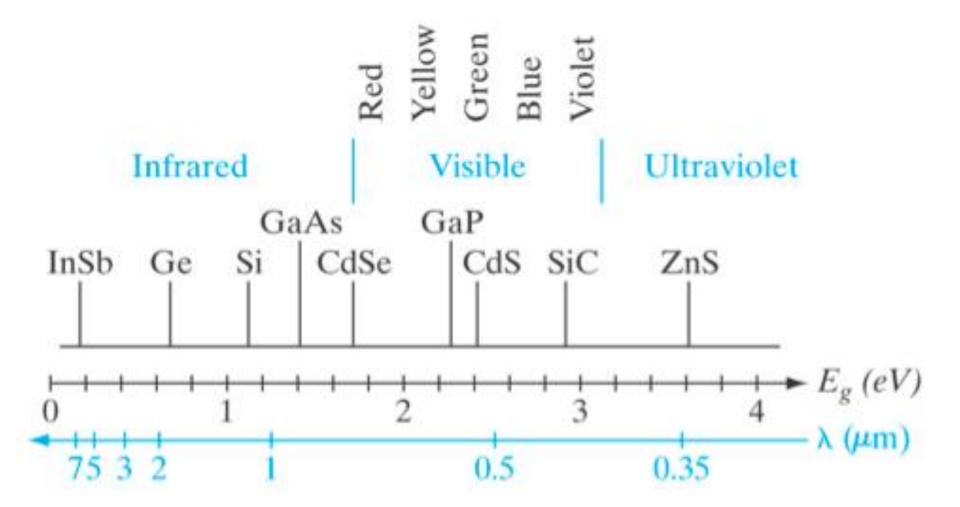
Newport 918D Photodiode Sensor

As the beam travels in the semiconductor it is absorbed at a rate proportional to the intensity

Optical Absorption

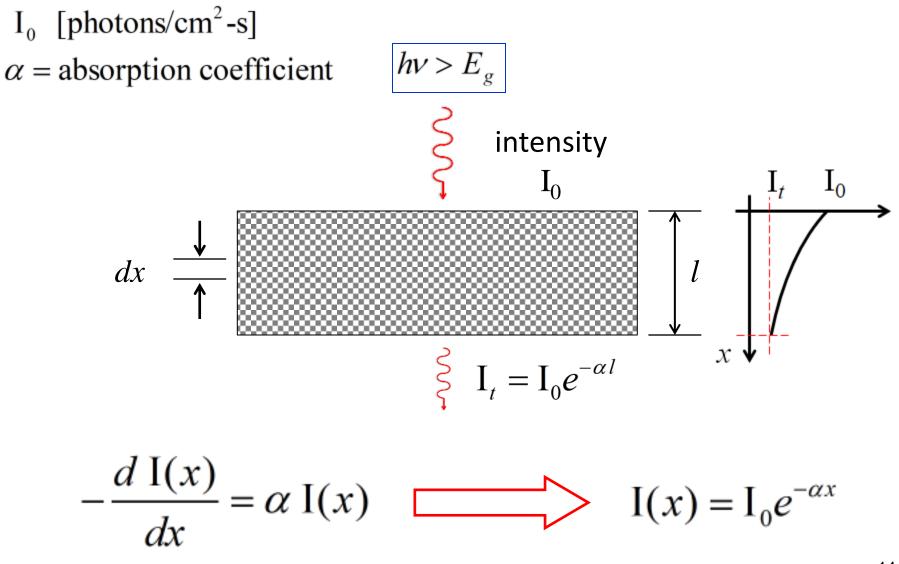


Wavelengths and band gaps

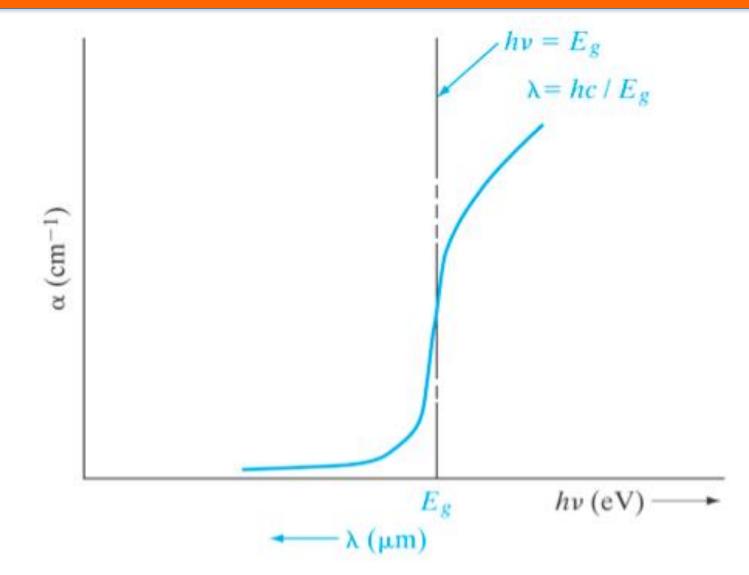


From *Solid State Electronic Devices*, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee. ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Optical Absorption

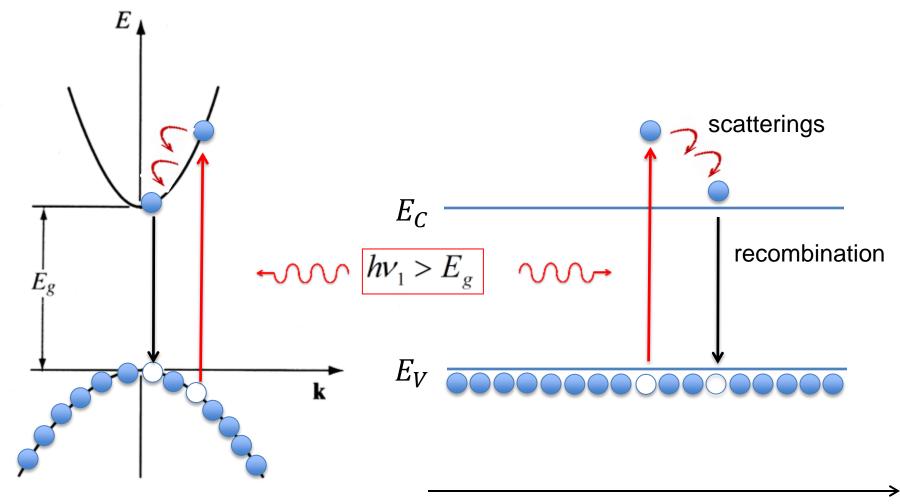


Optical Absorption Coefficient



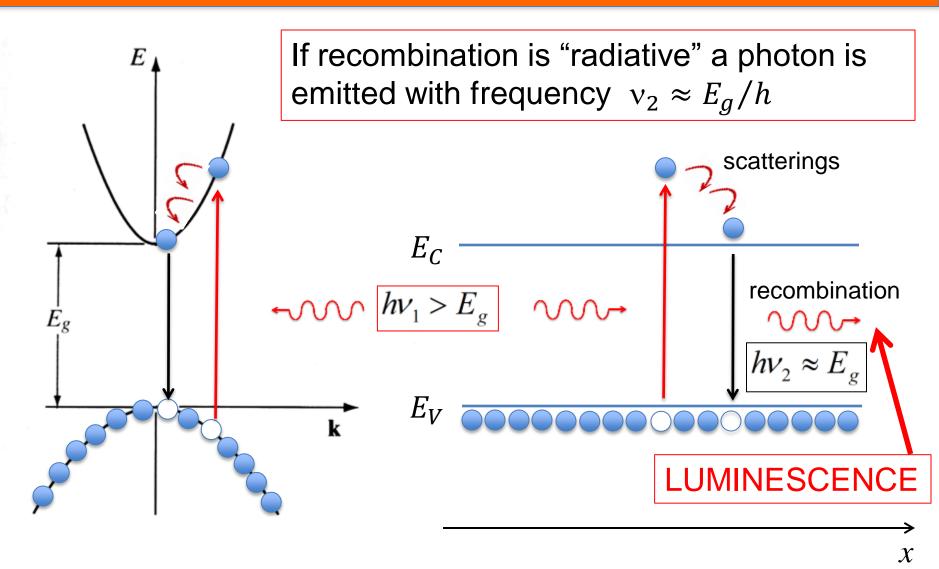
From *Solid State Electronic Devices*, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee. ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

The competing process is recombination



Momentum space

The competing process is recombination

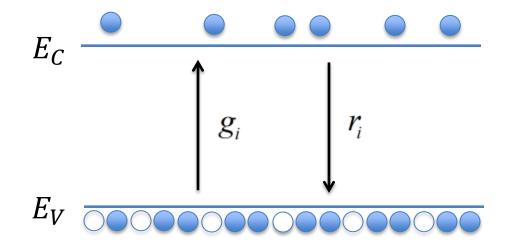


Momentum space

Thermal recombination rate = thermal generation rate

$$r_i = \alpha_r n_o p_o = \alpha_r n_i^2 = g_i$$

 α_r is a proportionality constant that depends on the recombination mechanism (NOTE – this is NOT the same as α = absorption coefficient)



In equilibrium

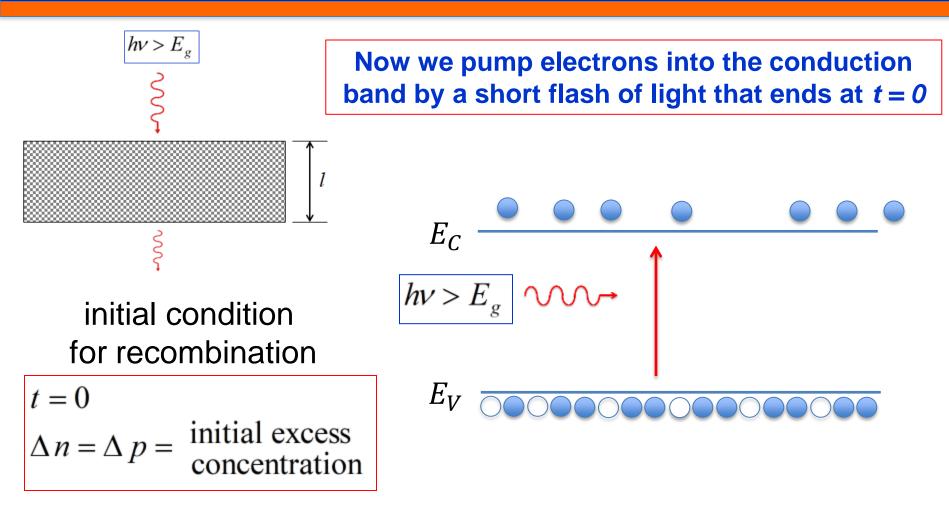
 $0 = \alpha_r n_i^2 - \alpha_r n_i^2 = \alpha_r n_i^2 - \alpha_r n_o p_o$ thermal generation

recombination

thermal generation

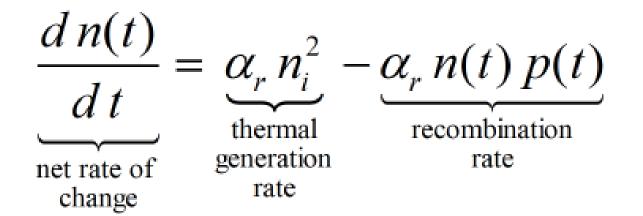
recombination

 $0 = \alpha_r n_o p_o - \alpha_r n_o p_o$ thermal recombination generation



 $\delta n(t)$ = instantaneous concentration of <u>excess</u> electrons $\delta p(t)$ = instantaneous concentration of <u>excess</u> holes

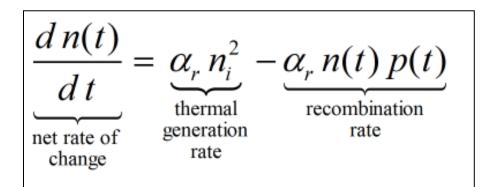
If we generate excess carriers, the net rate of change of electrons in the conduction band is given by



 $\frac{d[n_o + \delta n(t)]}{dt} = \alpha_r n_i^2 - \alpha_r [n_o + \delta n(t)] [p_o + \delta p(t)]$ thermal recombination generation

$$t = 0$$

 $\Delta n = \Delta p =$ initial excess concentration



 $d \delta n(t)$

$$\delta n(t) = \delta p(t)$$

Use
$$n_o p_o = n_i^2$$

to eliminate $\alpha_r n_i^2$

$$\frac{d \delta n(t)}{d t} = \alpha_r n_i^2 - \alpha_r [n_o + \delta n(t)] [p_o + \delta p(t)]$$
$$\frac{d \delta n(t)}{d t} = -\alpha_r [(n_o + p_o) \delta n(t) + \delta n^2(t)]$$

Low-level injection conditions \rightarrow Simplification

$$\frac{d\,\delta n(t)}{d\,t} = -\alpha_r \left[(n_o + p_o)\,\delta n(t) + \underbrace{\delta n^2(t)}_{\text{can be neglected}} \right]$$

< >

Extrinsic semiconductor *p*-type

$$\frac{d\,\delta n(t)}{d\,t} \simeq -\alpha_r \, p_o \,\delta n(t) \qquad p_o \gg n_o$$

$$\sum \delta n(t) = \underbrace{\Delta n}_{\substack{\text{initial}\\\text{condition}}} \exp\left(-\alpha_r p_o t\right) = \Delta n \exp\left(-\frac{t}{\tau_n}\right)$$

 $\tau_n = \frac{1}{\alpha_r p_o}$ = minority recombination lifetime

Low-level injection conditions \rightarrow Simplification

$$\frac{d\,\delta n(t)}{d\,t} = -\alpha_r \left[(n_o + p_o)\,\delta n(t) + \underbrace{\delta n^2(t)}_{\text{can be neglected}} \right]$$

Extrinsic semiconductor *n*-type

$$\frac{d\,\delta\,p(t)}{d\,t} \simeq -\alpha_r \,n_o\,\delta\,p(t) \qquad n_o \gg p_o$$

$$\delta p(t) = \underbrace{\Delta p}_{\substack{\text{initial}\\\text{condition}}} \exp\left(-\alpha_r n_o t\right) = \Delta p \, \exp\left(-\frac{t}{\tau_p}\right)$$

$$\tau_p = \frac{1}{\alpha_r n_o} =$$
minority recombination lifetime

Low level injection conditions \rightarrow Simplification

More generally you can use this formula

$$\tau = \frac{1}{\alpha_r \left(n_o + p_0 \right)}$$

It works for both *p*- and *n*-type material in low level injection conditions