ECE 340 Lecture 14 Semiconductor Electronics

Spring 2022 10:00-10:50am Professor Umberto Ravaioli Department of Electrical and Computer Engineering 2062 ECE Building

Today's Discussion

- Summary of previous lecture:
 - Optical absorption
 - Direct Recombination of Electrons and Holes
- Steady State Carrier Generation
- Photoconductive Devices

We have introduced the following optical processes in a semiconductor material:

- 1. Absorption of light as a function of space
- 2. Recombination process after a uniform distribution of excess carriers has been generated (and the illumination is abruptly interrupted)

Today we will discuss a third process:

3. Steady-state generation of excess carriers under continuous illumination

1. Optical Absorption

2. Recombination of Electrons and Holes

We have obtained the evolution equation

$$\frac{d\,\delta n(t)}{d\,t} = -\alpha_r \Big[(n_o + p_o)\,\delta n(t) + \delta n^2(t) \Big]$$

30

2. Recombination of Electrons and Holes

$$\frac{d\,\delta n(t)}{d\,t} = -\alpha_r \Big[(n_o + p_o)\,\delta n(t) + \delta n^2(t) \Big]$$

Last term can be neglected in the case of "low level injection"

$$\delta n^2(t) \ll (n_o + p_0) \delta n(t)$$
$$\delta n(t) \ll (n_o + p_0)$$

In extrinsic semiconductor, we can predict the decay of minority carrier concentration due to recombination.

Low-level injection conditions \rightarrow Simplification

$$\frac{d\,\delta n(t)}{d\,t} = -\alpha_r \left[(n_o + p_o)\,\delta n(t) + \underbrace{\delta n^2(t)}_{\text{can be neglected}} \right]$$

Extrinsic semiconductor *p*-type

$$\frac{d\,\delta n(t)}{d\,t} \simeq -\alpha_r \, p_o \,\delta n(t) \qquad p_o \gg n_o$$

$$\delta n(t) = \underbrace{\Delta n}_{\text{initial}} \exp\left(-\alpha_r p_o t\right) = \Delta n \exp\left(-\frac{t}{\tau_n}\right)$$

 $\tau_n = \frac{1}{\alpha_r p_o}$ = minority recombination lifetime

Low-level injection conditions \rightarrow Simplification

$$\frac{d\,\delta n(t)}{d\,t} = -\alpha_r \left[(n_o + p_o)\,\delta n(t) + \underbrace{\delta n^2(t)}_{\text{can be neglected}} \right]$$

Extrinsic semiconductor *n*-type

$$\frac{d\,\delta\,p(t)}{d\,t} \simeq -\alpha_r \,n_o\,\delta\,p(t) \qquad n_o \gg p_o$$

$$\delta p(t) = \underbrace{\Delta p}_{\substack{\text{initial}\\\text{condition}}} \exp\left(-\alpha_r n_o t\right) = \Delta p \, \exp\left(-\frac{t}{\tau_p}\right)$$

 $\tau_p = \frac{1}{\alpha_r n_o} =$ minority recombination lifetime

Low level injection conditions \rightarrow Simplification

More generally you can use this formula

$$\tau = \frac{1}{\alpha_r \left(n_o + p_0 \right)}$$

It works for both *p*- and *n*-type material in low level injection conditions

Remember this problem?

$$R = \rho \frac{L}{A} = 227.4 \times 10^3 \frac{1.0}{10^{-2}} = 22.74 \times 10^6 = 22.74 \text{ M}\Omega$$

$$I = \frac{V}{R} = \frac{10}{22.74 \times 10^6} = 0.44\,\mu\text{A}$$

Can we increase the current somehow (i.e. increase carrier concentration)?

Assume photogeneration of 10^{16} cm⁻³

$$\rho = \frac{1}{q\mu_n n_o + q\mu_p p_o} = \frac{1}{qn_o (\mu_n + \mu_p)} =$$

$$= \frac{1}{1.6 \times 10^{-19} \times 10^{16} (1350 + 480)} = 0.34 \,\Omega \cdot \mathrm{cm}$$

$$R = \rho \frac{L}{A} = 0.34 \frac{1.0}{10^{-2}} = 34 \,\Omega$$

$$I = \frac{V}{R} = \frac{10}{34} = 294 \,\mathrm{mA}$$

Current has increased ~ 600,000 times. What uses could have this device? 36

To explore more the EM spectrum, download this desktop Java App

Electromagnetic Waves Wavelength Calculator Select: Visible Spectrum About										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
400 THz 450 THz 500 THz 550 THz 600 THz 650 THz 700 THz 750 THz <										
Frequency $f = 400.0$ $\times 10^{12}$ [Hz] tera-Hertz = 10^{12} Hertz = 400.0 [THz]										
VISIBLE SPECTRUM Red Band: 400 THz - 484 THz (750 nm - 620 nm) 400 THz - 789 THz AlGaAs - AlGaInP Lasers (~ 630 to 900 nm)										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										

© Amanogawa, 2022 - All Rights Reserved

Steady State Carrier Generation

 After analyzing the transient decay of an excess electron-hole pair (EHP) population, we now look at the steady-state regime.

Again, we give another look at thermal equilibrium. At any temperature T there is a thermal generation rate

 $g(T) = g_i$

Steady-state thermal equilibrium

Thermal recombination rate = thermal generation rate

$$r_i = \alpha_r n_o p_o = \alpha_r n_i^2 = g_i$$

with α_r a proportionality constant.

Steady-state generation of excess EHP

Total generation rate

Steady-state generation of excess EHP

$$\left(\begin{array}{c}g_{op}\\g$$

Steady-state excess carrier concentration

$$\delta n = \delta p = g_{op} \tau_n$$

<u>~~.</u>

If $\tau_n \neq \tau_p$ (e.g., recombination via traps)

< >、

$$\delta n = g_{op} \tau_n$$
$$\delta p = g_{op} \tau_p$$

Photoconductive Devices

Conductivity before illumination

$$\sigma = \sigma_n + \sigma_p = q\left(n\mu_n + p\mu_p\right)$$

• After illumination, change in conductivity

Photoconductive Devices

$$\Delta \sigma = q \Big[\delta n \mu_n + \delta p \mu_p \Big]$$

$$\delta n = g_{op} \tau_n$$
$$\delta p = g_{op} \tau_p$$

$$\Delta \sigma = q g_{op} \left(\tau_n \mu_n + \tau_p \mu_p \right)$$

- For high sensitivity
 - High mobility
 - Long recombination times

Some Photoconductive Materials

				<i>E_g</i> (eV)	μ _n (cm²/V-s)	μ _ρ (cm²/V-s)	m [*] n∕m₀ (mı,m₁)	m [*] _p /m _o (m _{lh} ,m _{hh})	a (Å)	€ŗ	Density (g/cm ³)	Melting point (°C)
	Si		(i/D)	1.11	1350	480	0.98, 0.19	0.16, 0.49	5.43	11.8	2.33	1415
IR	Ge	;	(i/D)	0.67	3900	1900	1.64, 0.082	0.04, 0.28	5.65	16	5.32	936
	SiC	Σ (α)	(i/W)	2.86	500	—	0.6	1.0	3.08	10.2	3.21	2830
	AIF	þ	(i/Z)	2.45	80	_	_	0.2, 0.63	5.46	9.8	2.40	2000
	AIA	٩s	(i/Z)	2.16	1200	420	2.0	0.15, 0.76	5.66	10.9	3.60	1740
	Als	Sb	(i/Z)	1.6	200	300	0.12	0.98	6.14	11	4.26	1080
	Go	P	(i/Z)	2.26	300	150	1.12, 0.22	0.14, 0.79	5.45	11.1	4.13	1467
	Go	aAs	(d/Z)	1.43	8500	400	0.067	0.074, 0.50	5.65	13.2	5.31	1238
	Go	N	(d/Z, W)	3.4	380	_	0.19	0.60	4.5	12.2	6.1	2530
	Go	Sb	(d/Z)	0.7	5000	1000	0.042	0.06, 0.23	6.09	15.7	5.61	712
	InP		(d/Z)	1.35	4000	100	0.077	0.089, 0.85	5.87	12.4	4.79	1070
	InA	As	(d/Z)	0.36	22600	200	0.023	0.025, 0.41	6.06	14.6	5.67	943
IR	InS	ь	(d/Z)	0.18	10 ⁵	1700	0.014	0.015, 0.40	6.48	17.7	5.78	525
	Zn	S	(d/Z, W)	3.6	180	10	0.28	—	5.409	8.9	4.09	1650*
	Zn	Se	(d/Z)	2.7	600	28	0.14	0.60	5.671	9.2	5.65	1100*
	Zn	Te	(d/Z)	2.25	530	100	0.18	0.65	6.101	10.4	5.51	1238*
VIS	Cd	S	(d/W, Z)	2.42	250	15	0.21	0.80	4.137	8.9	4.82	1475
	Cd	Se	(d/W)	1.73	800	—	0.13	0.45	4.30	10.2	5.81	1258
	Cd	Te	(d/Z)	1.58	1050	100	0.10	0.37	6.482	10.2	6.20	1098
	Pbs	S	(i/H)	0.37	575	200	0.22	0.29	5.936	17.0	7.6	1119
	Pbs	Se	(i/H)	0.27	1500	1500	—	-	6.147	23.6	8.73	1081
	Pb	Те	(i/H)	0.29	6000	4000	0.17	0.20	6.452	30	8.16	925

All values at 300 K.

*Vaporizes

- Consider Si at T=300K and $n_o = 10^{14} \text{ cm}^{-3}$
- Optical generation 10^{19} EHP cm⁻³/s
- Recombination lifetimes $\tau_n = \tau_p = 2 \times 10^{-6} \mathrm{s}$
- Steady-state concentration

 $\delta n = \delta p = g_{op} \tau_n =$ = 10¹⁹ × 2 × 10⁻⁶ = 2 × 10¹³ cm⁻³

- Holes equilibrium concentration $p_o = \frac{n_i^2}{n_o} = \frac{2.25 \times 10^{20}}{10^{14}} = 2.25 \times 10^6 \text{cm}^{-3}$
- Holes total concentration $p_o + \delta p = 2.25 \times 10^6 + 2 \times 10^{13} \approx 2 \times 10^{13} \text{ cm}^{-3}$
- Electrons total concentration $n_o + \delta n = 10^{14} + 2 \times 10^{13} = 1.2 \times 10^{14} \text{ cm}^{-3}$

$$n_o p_o = n_i^2$$
$$\implies np \neq n_i^2$$

• Quasi-Fermi level for electrons

$$n_o + \delta n = n = 1.2 \times 10^{14} \text{ cm}^{-3}$$

$$n = n_i \exp\left[\frac{F_n - E_i}{k_B T}\right]$$

$$0.0259 \times \ln \frac{1.2 \times 10^{14}}{1.5 \times 10^{10}} = F_n - E_i$$

 $F_n - E_i = 0.0259 \times \ln(8 \times 10^3) = 0.233$ eV

Quasi-Fermi level for holes $p_o + \delta p = p = 2 \times 10^{13} \text{ cm}^{-3}$ $p = n_i \exp\left[\frac{E_i - F_p}{k_B T}\right]$ $0.0259 \times \ln \frac{2 \times 10^{13}}{1.5 \times 10^{10}} = F_p - E_i$

 $E_i - F_p = 0.0259 \times \ln(1.\overline{3} \times 10^3) = 0.1864 \text{ eV}$

$$n = n_i e^{(F_n - E_i)/kT}$$
$$p = n_i e^{(E_i - F_p)/kT}$$

49