ECE 340 Lecture 16
Semiconductor Electronics

Spring 2022
10:00-10:50am
Professor Umberto Ravaioli
Department of Electrical and Computer Engineering
2062 ECE Building
Today’s Discussion

• Diffusion transport
• Diffusion coefficient
• Einstein’s relation
Carrier Transport Mechanisms

• Mobile carriers (electrons in conduction band and holes in valence band) move in space according to two basic physical processes:

 – DRIFT

 – DIFFUSION

• In general these two phenomena coexist and interplay with each other
We have seen already the DRIFT process.

\[J_{n}^{\text{drift}} = -qn \langle v_{dn} \rangle = qn \mu_n \mathcal{E}_x \]
\[J_{p}^{\text{drift}} = qp \langle v_{dp} \rangle = qp \mu_p \mathcal{E}_x \]
We have seen already the DRIFT process

\[\mu_n = -\frac{\langle v_{dn} \rangle}{\mathcal{E}_x} = \frac{q \tau_c}{m_n^*} \]

\[\mu_p = \frac{\langle v_{dp} \rangle}{\mathcal{E}_x} = \frac{q \tau_c}{m_p^*} \]

In a uniform semiconductor system with an applied electric field drift is the only transport phenomenon
Diffusion occurs when there is non-uniformity in carrier density

Example: create a narrow distribution of carriers in space
Diffusion occurs when there is non-uniformity in carrier density.
Charge is moving → is there a net current flowing?

Positive slope
Particle flux in the negative direction

Negative slope
Particle flux in the positive direction
SIMPLIFYING ASSUMPTIONS:
1) One-dimensional model for motion and concentration gradients
2) All carriers have the same average thermal speed $|v_{th}|$
3) Distance travelled between collisions is fixed at mean free path

Divide space in bins of width = mean free path

$\sim 50\%$ go this way $\leftrightarrow \sim 50\%$ go this way

From each bin, because of random walk of particles

Average time between collisions $= \tau_c$
Mean free path $= \lambda = v_{th} \tau_c$

$\lambda = \frac{\bar{l}}{\omega}$
$\tau_c = \frac{\bar{t}}{\omega}$

book uses

book uses
Flux of particles per unit area

\[
\text{Flux } = \Phi_n(x_o) = \frac{l}{2t} (n_1 - n_2)
\]

\[
(n_1 - n_2) = \frac{n_1 - n_2}{l} \frac{l}{\overline{l}} = \frac{n(x) - n(x + \Delta x)}{\Delta x} \frac{l}{\overline{l}} \\
\approx \frac{dn(x)}{dx}
\]

\[
\text{Flux } = \Phi_n(x_o) = -\frac{l^2}{2t} \frac{dn(x)}{dx}
\]

diffusion coefficient

Discretize space in terms of mean-free path, which is a small quantity.
Diffusion coefficient

This diffusion coefficient is approximate and it is based on a 1D model (in 3D, factor of “3” at denominator for the x-component result) but this gives a qualitative idea of what is involved in diffusion processes. More physics is needed, anyway, for rigor.

We will use

\[D_n = \text{Diffusion coefficient for electrons} \]
\[D_p = \text{Diffusion coefficient for holes} \]

A more rigorous diffusion coefficient will be derived soon from the total current in equilibrium conditions.
From particle flux to diffusion current density

\[
\varphi_n(x) = -D_n \frac{dn(x)}{dx}
\]

\[
\varphi_p(x) = -D_p \frac{dp(x)}{dx}
\]

\[
J_{\text{diff}}^n = qD_n \frac{dn(x)}{dx}
\]

\[
J_{\text{diff}}^p = -qD_p \frac{dp(x)}{dx}
\]
These currents represent the carrier density as a “compressible fluid of charged particles”. The flow model will be assembled later in the form of “continuity equations” (conservation of charge).

The field depends on charges (fixed and mobile) so the model is to be completed with the addition of Poisson equation.
Diffusivity – Consider Equilibrium (\(J = 0 \))

Current density for holes

\[
0 = qp(x)\mu_p \mathcal{E}(x) - qD_p \frac{dp(x)}{dx}
\]

\[
\mathcal{E}(x) = \frac{D_p}{\mu_p} \frac{1}{p(x)} \frac{dp(x)}{dx}
\]

Use:

\[
p = n_i \exp\left(\frac{E_i - E_F}{k_BT}\right)
\]

\[
\frac{dp(x)}{dx} = n_i \exp\left(\frac{E_i - E_F}{k_BT}\right) \frac{1}{k_BT} \left[\frac{dE_i}{dx} - \frac{dE_F}{dx} \right]
\]
Diffusivity – Consider Equilibrium \((J = 0)\)

Current density for holes

\[
0 = q \mu_p p(x) \mathcal{E}(x) - q D_p \frac{dp(x)}{dx}
\]

\[
\mathcal{E}(x) = \frac{D_p}{\mu_p} \frac{1}{p(x)} \frac{dp(x)}{dx}
\]

\[
p = n_i \exp\left(\frac{E_i - E_F}{k_B T} \right)
\]

\[
\mathcal{E}(x) = \frac{D_p}{\mu_p} \frac{1}{k_B T} \left[\frac{dE_i}{dx} - \frac{dE_F}{dx} \right]
\]

\[
D_p = \frac{k_B T}{q} \mu_p
\]

Einstein relation
Diffusivity – Summarizing

\[\mathcal{E}(x) = \frac{D_p}{\mu_p} \frac{1}{p(x)} \frac{1}{k_B T} \left[\frac{dE_i}{dx} - \frac{dE_F}{dx} \right] = q \mathcal{E} \triangleq 0 \]

\[D_p = \frac{k_B T}{q} \mu_p \]

Einstein relation

Analogous result for electrons

\[D_n = \frac{k_B T}{q} \mu_n \]

Einstein relation
Einstein relations

\[D_p = \frac{k_B T}{q} \mu_p \]
\[D_n = \frac{k_B T}{q} \mu_n \]

Strictly valid in this linear region close to equilibrium

\[\mu(\mathcal{E}) = \frac{\langle v(\mathcal{E}) \rangle}{\mathcal{E}} \]
\[D(\mathcal{E}) = \frac{k_B T}{q} \mu(\mathcal{E}) \]

Empirical extension to nonlinear region
Continuity equation

Drift-Diffusion current equations tell us how charge moves “locally” in response to electric field and charge gradient.

\[J_n(x) = q\mu_n n(x) E(x) + qD_n \frac{dn(x)}{dx} \]

\[J_p(x) = q\mu_p p(x) E(x) - qD_p \frac{dp(x)}{dx} \]

To solve for a “device” structure we need to patch together regions with varying fields and densities. We need a mathematical model which conserves current density.
Divide the domain in patches. Current exiting one side of a patch is the same entering the neighboring patch. Generation/recombination rates may modify the charge density inside the patches.

We need equations to express current continuity.
Simplify to 1-D

\[q \frac{\partial p(x,t)}{\partial t} = \lim_{\Delta x \to 0} \frac{J_p(x - \Delta x/2) - J_p(x + \Delta x/2)}{\Delta x} - q \frac{\delta p}{\tau_p} \]

Change (Balance) of hole charge density around point \(x \)
1-D Continuity Equations

Holes

\[
\frac{\partial p(x,t)}{\partial t} = -\frac{1}{q} \frac{\partial}{\partial x} J_p(x) - \frac{\delta p}{\tau_p}
\]

Electrons

\[
\frac{\partial n(x,t)}{\partial t} = \frac{1}{q} \frac{\partial}{\partial x} J_n(x) - \frac{\delta n}{\tau_n}
\]

In terms of excess carriers

\[
\frac{\partial}{\partial t} \delta p(x,t) = -\frac{1}{q} \frac{\partial}{\partial x} J_p(x) - \frac{\delta p}{\tau_p}
\]

\[
\frac{\partial}{\partial t} \delta n(x,t) = \frac{1}{q} \frac{\partial}{\partial x} J_n(x) - \frac{\delta n}{\tau_n}
\]
Diffusive regime (no drift)

substitute

\[J_n(\text{diff.}) = qD_n \frac{\partial}{\partial x} \delta n(x,t) \]

Diffusion Equations

Electrons

\[\frac{\partial}{\partial t} \delta n(x,t) = D_n \frac{\partial^2}{\partial x^2} \delta n(x,t) - \frac{\delta n}{\tau_n} \]

Holes

\[\frac{\partial}{\partial t} \delta p(x,t) = D_p \frac{\partial^2}{\partial x^2} \delta p(x,t) - \frac{\delta p}{\tau_p} \]