ECE 340 Lectures 25 Semiconductor Electronics

Spring 2022 10:00-10:50am Professor Umberto Ravaioli Department of Electrical and Computer Engineering 2062 ECE Building

Today's Discussion

- Reverse bias
- Breakdown voltage
- Breakdown mechanisms
 - Zener effect
 - Avalanche

Details of particle flows

 $(N_D > N_A)$

Reverse bias $V = -V_r$

$$I = I_0 \left[\exp\left(-\frac{qV_r}{k_B T}\right) - 1 \right]$$

$$I = -I_0 = -qA\left(\frac{D_p}{L_p}p_n + \frac{D_n}{L_n}n_p\right)$$

Reverse bias
$$V = -V_r$$
 with $V_r \gg k_B T/q$

$$\Delta p_n = p_n \left[\exp\left(-\frac{qV_r}{k_B T}\right) - 1 \right] \approx -p_n$$
$$\Delta n_p = n_p \left[\exp\left(-\frac{qV_r}{k_B T}\right) - 1 \right] \approx -n_p$$

Reverse bias minority carriers

From *Solid State Electronic Devices*, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee. ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Reverse bias carrier distributions

Quasi-Fermi level reminder

$$n = n_i \exp\left(\frac{F_n - E_i}{k_B T}\right)$$

$$p = n_i \exp\left(\frac{E_i - F_p}{k_B T}\right)$$

$$pn = n_i^2 \exp\left(\frac{F_n - E_i + E_i - F_p}{k_B T}\right)$$
$$= n_i^2 \exp\left(\frac{F_n - F_p}{k_B T}\right)$$

Reverse bias minority carriers

Pictorial summary of a p+/n junction

The following summary slides are adapted from the most recent edition (2006) of a classic comprehensive book on semiconductor devices. This book can be downloaded through the University Library:

S.M. Sze and K.K. Ng "Physics of Semiconductor Devices"

from the Wiley Online Library. For students who are interested in continuing with semiconductors or who simply want to have the standard reference which most professionals have used since the 1970's, this is highly recommended.

Forward bias

Reverse bias

Adapted from S.M. Sze and K.K. Ng "Physics of Semiconductor Devices"

Forward bias

Reverse bias

Adapted from S.M. Sze and K.K. Ng "Physics of Semiconductor Devices"

Exercise

 Consider an abrupt *p-n* junction with cross-sectional area A = 1 mm² at T = 300K, with:

p-side*n*-side
$$N_A = 10^{16} \mathrm{cm}^{-3}$$
 $N_D = 10^{18} \mathrm{cm}^{-3}$ $\mu_p = 370 \mathrm{cm}^2/\mathrm{Vs}$ $\mu_n = 550 \mathrm{cm}^2/\mathrm{Vs}$ $\mu_n = 1,000 \mathrm{cm}^2/\mathrm{Vs}$ $\mu_p = 150 \mathrm{cm}^2/\mathrm{Vs}$ $\tau_n = 1.0 \ \mu \mathrm{s}$ $\tau_p = 1.0 \ \mu \mathrm{s}$

Find the reverse saturation current

• Reverse saturation current

$$I = -I_0 = -qA \left(\frac{D_p}{L_p}p_n + \frac{D_n}{L_n}n_p\right)$$

$$p_n = \frac{n_i^2}{n_n} = \frac{(1.5 \times 10^{10})^2}{10^{18}} = 2.25 \times 10^2 \text{ cm}^{-3}$$

$$n_p = \frac{n_i^2}{p_p} = \frac{(1.5 \times 10^{10})^2}{10^{16}} = 2.25 \times 10^4 \text{ cm}^{-3}$$

$$(D_p)_n = \frac{k_B T}{q} (\mu_p)_n = 0.0259 \times 150 = 3.89 \text{ cm}^2 \text{ s}$$

$$(D_n)_p = \frac{k_B T}{q} (\mu_n)_p = 0.0259 \times 1000 = 25.9 \text{ cm}^2 \text{ s}$$

• Reverse saturation current

$$I = -I_0 = -qA \left(\frac{D_p}{L_p} p_n + \frac{D_n}{L_n} n_p\right)$$
$$L_p = \sqrt{D_p \tau_p} = \sqrt{25.9 \times 10^{-6}} = 0.00197 \text{cm}$$
$$L_n = \sqrt{D_n \tau_n} = \sqrt{3.89 \times 10^{-6}} = 0.00509 \text{cm}$$

$$I = -1.602 \times 10^{-19} \times 10^{-2} \times \left(\frac{3.89}{0.00197} 2.25 \times 10^2 + \frac{25.9}{0.00509} 2.25 \times 10^4\right)$$
$$= -1.839 \times 10^{-13} \text{A}$$

p-n junction *I-V* curve under reverse bias

Circuit considerations:

The resistor **R** helps constrain the current in the **reverse breakdown** regime.

(Remember ECE 110)

p-n junction *I-V* curve under reverse bias

Compare with forward bias: same current magnitude, same resistance (same slope).

Which condition uses more power?

In reverse bias the depletion width is wider but space separation between $\downarrow \longleftrightarrow \downarrow$ band edges is actually narrower, $W = 0.023 \ \mu m$ making tunneling more likely.

At shallow doping the depletion region is not sufficiently wide to allow tunneling between bands and there is no appreciable Zener effect.

At shallow doping the distance between bands is not sufficiently wide to allow tunneling.

At relatively higher reverse voltages [about $q(V_0 - V_r) > E_g$], avalanche generation dominates, due to a high energy scattering mechanism called "impact ionization".

Both energetic electrons and holes may have multiple impact ionization collisions. Secondary electrons and holes with sufficient energy may also experience impact ionization collisions. An so on until carriers exit the depletion region...23

multiplication factor

$$M_n = \frac{n_{out}}{n_{in}}$$

multiplication factor
$$M_n = \frac{n_{out}}{n_{in}} = \frac{1}{1 - P}$$

In this simple model, since P is close to unity, carrier multiplication essentially could grow without limit. The external circuit, as seen earlier, actually limits the current and there should also be a dependence on bias.

Empirical relation from experimental observations where n depends on the material and is between 3 and 6

$$M_{exp} = \frac{1}{1 - \left(\frac{V}{V_{br}}\right)^n}$$

Reverse breakdown (B): *p*⁺-*n* junction

From *Solid State Electronic Devices*, Sixth Edition, by Ben G. Streetman and Sanjay Kumar Banerjee. ISBN 0-13-149726-X. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Breakdown diodes are largely based on avalanche generation effects, although these devices are often referred to an Zener diodes. This is historical, due to misinterpretations in early observations of breakdown in p-n junctions.

Zener tunnelling is only effective up to several volts in highly doped junctions. Diodes which are rated for breakdown at tens to hundreds of volts, experience primarily avalanche generation.

EXTRA – voltage reference in circuits

Example: $V_{in} = 12 \text{ V} \text{ (available)}$ $V_{out} = 5 \text{ V} \text{ (wanted)}$

Maximum power rating of the breakdown diode $P_{max} = 2$ W. Calculate:

- (a) maximum breakdown current
- (b) Minimum value of R_S
- (c) Current I_L with load $R_L = 1 k\Omega$
- (d) Diode current I_Z with load & R_{Smin}

30

(a)
$$I_{Zmax} = 2W/5V = 400 \text{ mA}$$

(b) $R_{Smin} = (V_{in} - V_{out})/I_{Zmax} = (12 - 5)/0.4 = 17.5 \Omega$
(c) $I_L = (V_{out}/R_L) = 5/1000 = 5\text{mA}$
(d) $I_Z = I_S - I_L = 400\text{mA} - 5\text{mA} = 395\text{mA}$

EXTRA – Breakdown Diodes in series

- More voltage options with diodes in series.
- Standard forward biased Si diodes may be included to add ~ 0.6 to 0.7 V increments

Example - Commercial diodes

BZX55 Zener Diode Power Rating 500mW							
2.4V	2.7V	3.0V	3.3V	3.6V	3.9V	4.3V	4.7V
5.1V	5.6V	6.2V	6.8V	7.5V	8.2V	9.1V	10V
11V	12V	13V	15V	16V	18V	20V	22V
24V	27V	30V	33V	36V	39V	43V	47V
BZX85 Zener Diode Power Rating 1.3W							
3.3V	3.6V	3.9V	4.3V	4.7V	5.1V	5.6	6.2V
6.8V	7.5V	8.2V	9.1V	10V	11V	12V	13V
15V	16V	18V	20V	22V	24V	27V	30V
33V	36V	39V	43V	47V	51V	56V	62V

EXTRA - More options for voltage clippers

Single breakdown diode clipper (in forward bias it behaves like a regular diode)

Double breakdown diode clipper (for each half wave one diode is at beakdown, the other one is a forward biased diode adding 0.6 to 0.7 V)

