ECE 340 Lecture 30 Semiconductor Electronics

Spring 2022 10:00-10:50am Professor Umberto Ravaioli Department of Electrical and Computer Engineering 2062 ECE Building

Today's Discussion

- Semiconductor Lasers Recap
- Metal-Semiconductor Junctions
- Schottky Barrier
- Rectifying Contacts
- Ohmic contacts

Semiconductor Laser

• Simple *p-n* junction (e.g., GaAs)

mirror surface

Two ingredients are needed to make a laser:

- population inversion (stable population of excited states)
- resonant cavity to build up a coherent photon population for stimulated emission to occur (coherence)

Population Inversion

Heavily doped *p-n* junction in forward bias

Population Inversion

Heavily doped *p-n* junction in forward bias

Population Inversion

Heavily doped *p-n* junction in forward bias

Population inversion

$$n = N_C \exp\left(\frac{E_C - F_n}{k_B T}\right) = n_i \exp\left(\frac{F_n - E_i}{k_B T}\right)$$
$$p = N_v \exp\left(\frac{F_p - E_V}{k_B T}\right) = n_i \exp\left(\frac{E_i - F_p}{k_B T}\right)$$

electrons can recombine approximately in the range of energies

$$E_g < h \vee < (F_n - F_p)$$

Cavity modes

 $L = m \frac{\lambda}{2}$

$$\boldsymbol{n} = \sqrt{\varepsilon} \qquad \lambda_0(vacuum) = \lambda \boldsymbol{n}$$
$$\boldsymbol{m} = \frac{2L}{\lambda_0} \boldsymbol{n}$$

some energy passes through the semi-reflecting mirror (this is the output of the laser)

The process by which an incoming photon of specific frequency interacts with an excited electron, causing it to drop to a lower energy level (recombine) emitting a second phonon with the same:

- frequency
- phase
- direction
- polarization

This reinforces the coherent oscillation, replenishing photons lost through the mirror.

At *low current levels*, **spontaneous emission** dominates (incoherent emission) in the whole range of possible frequencies (behaving like LED):

The photon wavelengths participating in the **stimulated emission** are determined by the length of the laser resonant cavity. As current increases, various cavity modes start to appear

At high current levels (above threshold), stimulated emission dominates (coherent emission) favoring a dominant mode:

At *high current levels (above threshold)*, **stimulated emission** dominates (coherent emission) favoring a dominant mode:

At *high current levels (above threshold)*, **stimulated emission** dominates (coherent emission) favoring a dominant mode:

Laser – Power emission characteristics

Modern Double Heterojunction Laser

Optical waveguiding and Carrier confinement

Modern Double Heterojunction Laser

Modern Double Heterojunction Laser

EDGE EMITTING LASER

Vertical Cavity Surface Emitting Laser (VCSEL)

Vertical Cavity Surface Emitting Laser (VCSEL)

Reference: [Jetter, Roßbach, Michler (2013). Red Emitting VCSEL. In VCSELs (pp. 379-401). Springer Verlag]

Vertical Cavity Surface Emitting Laser (VCSEL)

metal contact n-GaAs substrate

Bragg reflector 17.5 periods n-AlAs/GaAs

confinement layer 120 nm AlGaAs quantum well 8.0 nm InGaAs QW barrier 8.0 nm GaAs quantum well 8.0 nm InGaAs QW barrier 8.0 nm GaAs quantum well 8.0 nm InGaAs confinement layer 120 nm AlGaAs

Bragg reflector 30 periods p-AlGaAs/GaAs

p⁺GaAs contact layer

Metal-Semiconductor Junction

We start by assuming ideal interfaces (no interface states)

Metal-Semiconductor Junction (n-type)

Metal-Semiconductor Junction (n-type)

electron affinity $q\chi$ is fixed for a given semiconductor electron work-function $q\Phi_s$ in semiconductor depends on doping

metal work-function $q\Phi_m$ is \approx fixed for a given metal

Examples of work function

Element	Work function, ϕ_m	
Ag, silver	4.26	[eV]
Al, aluminum	4.28	[eV]
Au, gold	5.1	[eV]
Cr, chromium	4.5	[eV]
Mo, molybdenum	4.6	[eV]
Ni, nickel	5.15	[eV]
Pd, palladium	5.12	[eV]
Pt, platinum	5.65	[eV]
Ti, titanium	4.33	[eV]
W, tungsten	4.55	[eV]

Examples of electron affinity

Element	Electron affinity, χ	
Ge, germanium	4.13	[eV]
Si, silicon	4.01	[eV]
GaAs, gallium arsenide	4.07	[eV]
AlAs, aluminum arsenide	3.5	[eV]

Now form the Junction

Now form the Junction

Metal-Semiconductor Junction

Metal-Semiconductor Junction

Metal-Semiconductor Junction (p-type)

Metal-Semiconductor Junction (p-type)

Metal-Semiconductor Junction (p-type)

Rectifying contact

Forward Bias

Reverse Bias

37

Rectifying Junction

$$\Phi_m > \Phi_s$$
$$\Phi_m < \Phi_s$$

n-type semiconductor

p-type semiconductor

Ohmic Contact

 $\Phi_m < \Phi_s$ $\Phi_m > \Phi_s$

n-type semiconductor

p-type semiconductor

Other type of Ohmic contact

Other type of Ohmic contact (zoom out)

Realistic M-S junctions

Energy-band diagram of a metal-semiconductor junction with an interfacial layer and interface states.

Experimental barrier heights as a function of metal work functions for GaAs and Si. (From Crowley and Sze)

