ECE 340 Lecture 32 Semiconductor Electronics

Spring 2022 10:00-10:50am Professor Umberto Ravaioli Department of Electrical and Computer Engineering 2062 ECE Building

Today's Discussion

- MOS Capacitor (ideal model)
 - Flat band Voltage
 - Threshold Voltage
 - Capacitance

Ideal MOSFET Capacitor

Silicon bulk

substrate contact

Ideal MOSFET Capacitor (Equilibrium)

Ideal MOSFET Capacitor (Accumulation)

Ideal MOSFET Capacitor (Accumulation)

Ideal MOSFET Capacitor (Accumulation)

In accumulation:

- The MOS capacitor is charged with electrons on the metal side and holes at the interface between *p*-type semiconductor and oxide.
- The capacitance is related to the oxide layer

Oxide capacitance (unit area) $C_{i} = \frac{\varepsilon_{ox}}{d_{ox}}$ $d_{ox} = \text{thickness of oxide layer}$

Ideal MOSFET Capacitor (Depletion)

Ideal MOSFET Capacitor (Inversion)

Ideal MOSFET Capacitor (Inversion)

Deep in strong inversion:

- The depletion layer no longer responds to changes in the potential because of screening due to the strong electron layer at the interface
- The capacitance is again due only to the oxide

Oxide capacitance (unit area) $C_{i} = \frac{\varepsilon_{ox}}{d_{ox}}$ $d_{ox} = \text{thickness of oxide layer}$ The MOS capacitance is the series of a fixed oxide (insulator) parallel plate capacitance, independent of voltage

$$C_i = \frac{\varepsilon_{ox}}{d_{ox}}$$

and of a voltage-dependent semiconductor depletion layer capacitance

$$C_d = \frac{dQ}{dV} = \frac{dQ_s}{d\phi_s} \qquad \qquad C_d = \frac{\varepsilon_s}{W} \quad \leftarrow \begin{array}{c} c_{heck \ if \ typo \ in \ your \ edition} \end{array}$$

series of C_i and C_d

$$C = C_i C_d / (C_i + C_d)$$

Depletion capacitance model is approximate

$$C_d = \frac{\varepsilon_s}{W}$$

(it has highest error near flat band condition)

A better model for flat band condition indicates:

$$C_{d,FB} = \frac{\varepsilon_s}{L_D}$$

where L_D is the Debye length

$$L_D = \sqrt{\frac{\varepsilon_S k_B T}{q^2 p_0}}$$

MOS Capacitance Measurement

MOS Capacitance Measurement

Potential energy system of reference

Potential energy system of reference

Potential energy system of reference

Strong inversion condition (definition)

Strong inversion condition (definition)

Strong inversion condition

Analytical model for n(x)

away from interface

$$n_o = n_i \exp\left(\frac{E_F - E_i}{k_B T}\right) = n_i \exp\left(-\frac{q\phi_F}{k_B T}\right)$$

at any x location

$$n(x) = n_i \exp\left(\frac{E_F - E_i(x)}{k_B T}\right) = n_i \exp\left(-q \frac{\phi_F - \phi(x)}{k_B T}\right) =$$
$$= n_i \exp\left(-q \frac{\phi_F}{k_B T}\right) \exp\left(q \frac{\phi(x)}{k_B T}\right) = n_0 \exp\left(q \frac{\phi(x)}{k_B T}\right)$$

Analytical model for p(x)

away from interface

$$p_o = n_i \exp\left(\frac{E_i - E_F}{k_B T}\right) = n_i \exp\left(\frac{q\phi_F}{k_B T}\right)$$

at any x location

$$p(x) = n_i \exp\left(\frac{E_i(x) - E_F}{k_B T}\right) = n_i \exp\left(-q \frac{\phi(x) - \phi_F}{k_B T}\right) =$$
$$= n_i \exp\left(q \frac{\phi_F}{k_B T}\right) \exp\left(-q \frac{\phi(x)}{k_B T}\right) = p_0 \exp\left(-q \frac{\phi(x)}{k_B T}\right)$$

We do not know the exact behavior of $\phi(x)$ but we know the relationship between charge and potential

Poisson equation

$$\frac{d^2\phi}{dx^2} = -\frac{\rho(x)}{\epsilon_s}$$

with charge density

$$\rho(x) = q[N_D^+ - N_A^- + p(x) - n(x)]$$

Electric Field
$$\mathcal{E} = -\frac{d\phi}{dx}$$

$$\frac{d^{2}\phi}{dx^{2}} = \frac{d}{dx}\left(\frac{d\phi}{dx}\right) =$$

$$= -\frac{q}{\epsilon_{s}}\left\{p_{o}\left[\exp\left(-\frac{q\phi}{k_{B}T}\right) - 1\right] - n_{o}\left[\exp\left(\frac{q\phi}{k_{B}T}\right) - 1\right]\right\}$$

$$N_{D}^{+} - N_{A}^{-} = n_{o} - p_{o}$$

$$\int_{0}^{d\frac{d\phi}{dx}} \frac{d}{dx}\left(\frac{d\phi}{dx}\right) = \int_{0}^{\phi} RHS$$

$$x = 0$$

$$integrate$$

$$\delta = -\frac{d\phi}{dx} = 0$$

$$z_{5}$$

Solution result:

$$\mathcal{E}^{2} = \frac{2k_{B}T}{\varepsilon_{s}} p_{0} \left[\left(\exp\left(-\frac{q\phi}{k_{B}T}\right) + \frac{q\phi}{k_{B}T} - 1 \right) + \frac{n_{0}}{p_{0}} \left(\exp\left(\frac{q\phi}{k_{B}T}\right) - \frac{q\phi}{k_{B}T} - 1 \right) \right]$$

At the surface where x = 0, ϕ_s , \mathcal{E}_s

$$\mathcal{E}_{S} = \frac{\sqrt{2}k_{B}T}{qL_{D}}\sqrt{\left(\exp\left(-\frac{q\phi_{S}}{k_{B}T}\right) + \frac{q\phi_{S}}{k_{B}T} - 1\right) + \frac{n_{0}}{p_{0}}\left(\exp\left(\frac{q\phi_{S}}{k_{B}T}\right) - \frac{q\phi_{S}}{k_{B}T} - 1\right)}$$

where
$$L_D = \sqrt{\frac{\varepsilon_S k_B T}{q^2 p_0}}$$
 is the Debye Length

Charge density distribution

Charge density distribution

d = thickness of oxide

Oxide capacitance (unit area)

$$C_i = \frac{\varepsilon_i}{d}$$

Voltage across oxide
$$V_{i} = \frac{-Q_{s}}{C_{i}} = \frac{-Q_{s}d}{\varepsilon_{i}}$$

Applied voltage $V = V_i + \phi_s$

Similar to result for n^+ - p junction

$$W = \sqrt{\frac{2\epsilon_s \phi_s}{qN_A}} \qquad \phi_s < 2\phi_F$$

At strong inversion, depletion region no longer grows, due to screening of interface electrons

strong inversion

$$\frac{\phi_{S} = 2\phi_{F}}{W_{max}} = \sqrt{\frac{2\epsilon_{S}2\phi_{F}}{qN_{A}}} = 2\sqrt{\frac{\epsilon_{S}k_{B}T\ln\frac{N_{A}}{n_{i}}}{q^{2}N_{A}}}$$

Depletion charge at threshold

$$W_{max} = \sqrt{\frac{2\epsilon_s 2\phi_F}{qN_A}} \qquad \text{strong inversion limit}} \\ Q_D = -qN_A W_{max} = -qN_A \sqrt{\frac{2\epsilon_s 2\phi_F}{qN_A}} \\ Q_D = -2\sqrt{q\epsilon_s N_A \phi_F} \end{cases}$$

Threshold Voltage (ideal case)

$$Q_D = -qN_AW = -2\sqrt{q\epsilon_s N_A\phi_F}$$

maximum value

(Assuming that depletion charge dominates Q_s at threshold) Above, $-Q_D$ represents Q_m to give the potential drop across the oxide.

Potential drop across the oxide

$$V_{i} = \int_{0}^{a} \frac{Q_{m}}{\epsilon_{ox}} dx = Q_{m} \left[\frac{d}{\epsilon_{ox}} \right] \approx -\frac{Q_{D}}{C_{i}}$$

at threshold

 $\epsilon_{ox} = \epsilon_{rox}\epsilon_0$

$$Q_m \approx -Q_D$$

Electric Field distribution

Electric Potential distribution

Summary of conditions – surface potential

