ECE 340 Lectures 40 Semiconductor Electronics

Spring 2022 10:00-10:50am Professor Umberto Ravaioli Department of Electrical and Computer Engineering 2062 ECE Building

Today's Discussion

- Analytical model of the Bipolar Junction Transistor (BJT)
- Transistor as amplifier

BJT results so far

$$\gamma = \frac{i_{Ep}}{i_E} = \frac{i_{Ep}}{i_{Ep} + i_{En}}$$
 emitter injection
efficiency
$$i_C = B \ i_{Ep}$$
 base transport factor
$$\frac{i_C}{i_E} = B\gamma = \alpha$$
 current transfer
ratio
$$\frac{i_C}{i_B} = \frac{\alpha}{1 - \alpha} = \beta$$
 amplification factor

Base recombination time $\tau_n = \tau_p = 10 \ \mu s$ Base transit time $\tau_t = 0.1 \, \mu s$ Amplification factor $=\frac{i_C}{i_B}=\frac{\tau_n}{\tau_t}=100$ **Current Transfer ratio** $\frac{\beta}{1+\beta} = \frac{100}{101} =$ 0.99

For the curious ones:

 Video by Bill Hammack on the first transistor invented by Bardeen and Brattain at Bell Labs (point-contact transistor)

https://www.youtube.com/watch?v=RdYHljZi7ys

The book by Shockley contains an extensive description of the point-contact transistor, based on metalsemiconductor junctions rather than p-n junctions <u>https://archive.org/details/ElectronsAndHolesInSemiconductors</u>

 AT&T Archives video: Genesis of the Transistor: <u>https://www.youtube.com/watch?v=WiQvGRjrLnU</u>

Mathematical analysis of the *p-n-p* BJT

- Some simplifying assumptions are necessary in order to develop a manageable model which is general and valid for general bias conditions:
- 1. Negligible drift in the base region (holes move by diffusion)
- 2. Emitter injection efficiency $\gamma = 1$ (emitter is highly doped *p*+)
- 3. Reverse saturation current at the collector is negligible
- 4. Uniform cross-sectional area A (1-D model)
- 5. Steady-state conditions

Posted handout on NBD and BJT:

We are going to focus on the significance of the results and on physical understanding of physical behavior.

Details of the analytical solution for the 1-D model BJT are outlined in the posted handout and are left as optional reading for the interested students.

Actual complete simulations of realistic devices are carried out by numerical solution of the coupled system of semiconductor equations consisting of:

- continuity equations for electrons and holes based on the drift-diffusion current model
- Poisson equation to obtained self-consistent space dependent electric fields

Excess carriers in the whole device

Results obtained from analytical solution

$$I_{Ep} = qA \frac{D_p}{L_p} \left[\Delta p_E \operatorname{ctnh} \frac{W_B}{L_P} - \Delta p_C \operatorname{csch} \frac{W_B}{L_P} \right]$$

$$I_{C} = qA \frac{D_{p}}{L_{p}} \left[\Delta p_{E} \operatorname{csch} \frac{W_{B}}{L_{P}} - \Delta p_{C} \operatorname{ctnh} \frac{W_{B}}{L_{P}} \right]$$

$$I_B = qA \frac{D_p}{L_p} \left[(\Delta p_E + \Delta p_C) \tanh \frac{W_B}{2L_P} \right]$$

For the narrow base diode

$$I_p(x_n = 0) = qA \frac{D_p}{L_p} \Delta p_n \operatorname{ctnh} \frac{\ell}{L_p}$$
$$I_p(x_n = \ell) = qA \frac{D_p}{L_p} \Delta p_n \operatorname{csch} \frac{\ell}{L_p}$$
$$I_n(\operatorname{recomb}) = qA \frac{D_p}{L_p} \Delta p_n \operatorname{tanh} \frac{\ell}{2L_p}$$

With $\Delta p_{c} pprox 0$ essentially the same result obtained for BJT

In fact, NBD is equivalent to this BJT

 $V_{CB} = 0 \quad \rightarrow \quad \Delta p_C = 0$

Recall the carrier flow for p⁺-n-p

Redraw carrier flow for n⁺-p-n

Redraw band diagram for n⁺-p-n

Single battery bias for n-p-n BJT

Amplifier stage based on n-p-n BJT

Amplifier stage based on n-p-n BJT

Multi-stage amplifier example

BJT as amplifier or as switch

Voltage Transfer Characteristics

incremental voltage gain

$$G_V = \frac{\Delta V_{out}}{\Delta V_{in}} = \frac{-\Delta I_C R_C}{\Delta I_B R_B} = -\beta \frac{R_C}{R_B}$$

Summary of n-p-n BJT regimes

Amplification Example

Transistor circuit configurations

Common Emitter

- Current gain
- Voltage gain

Transistor circuit configurations

Common Base - Voltage gain

Transistor circuit configurations

Common Collector - Current gain

Common Emitter Amplifier Stage

Small signals equivalent circuit

