ECE 340 Lectures 42 Solid State Electronic Devices

Spring 2022
10:00-10:50am
Professor Umberto Ravaioli
Department of Electrical and Computer Engineering
2062 ECE Building

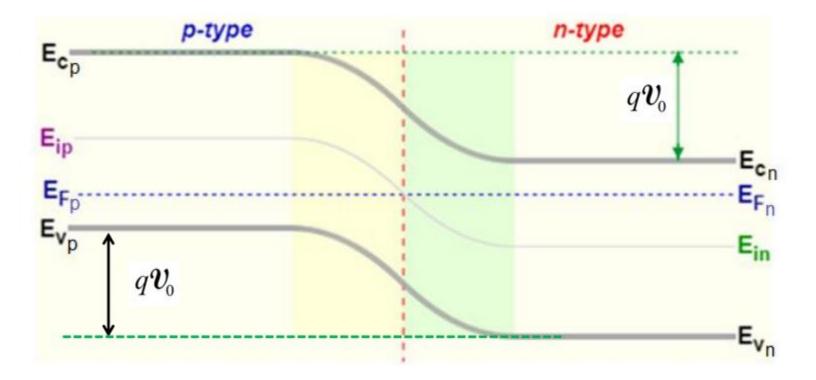
Today's Discussion

General Review

Topics covered

- p-n junctions
- Photodetectors/Solar Cells/Lasers
- metal-semiconductor junction
- MOS Capacitor
- Bipolar junction transistor

$$q {\it v}_0 = E_{\it Vp} - E_{\it Vn}$$
 (equilibrium)
$$q {\it v}_0 = E_{\it Cp} - E_{\it Cn}$$
 $E_{\it Fp} = E_{\it Fn}$ $q {\it v}_0 = E_{\it ip} - E_{\it in}$



(equilibrium)

Step junction: N_A on p-side & N_D on n-side

$$\mathbf{V}_0 = \frac{k_B T}{q} \ln \frac{p_p}{p_n} = \frac{k_B T}{q} \ln \frac{N_A N_D}{n_i^2}$$

$$p_n \approx \frac{n_i^2}{N_D}$$

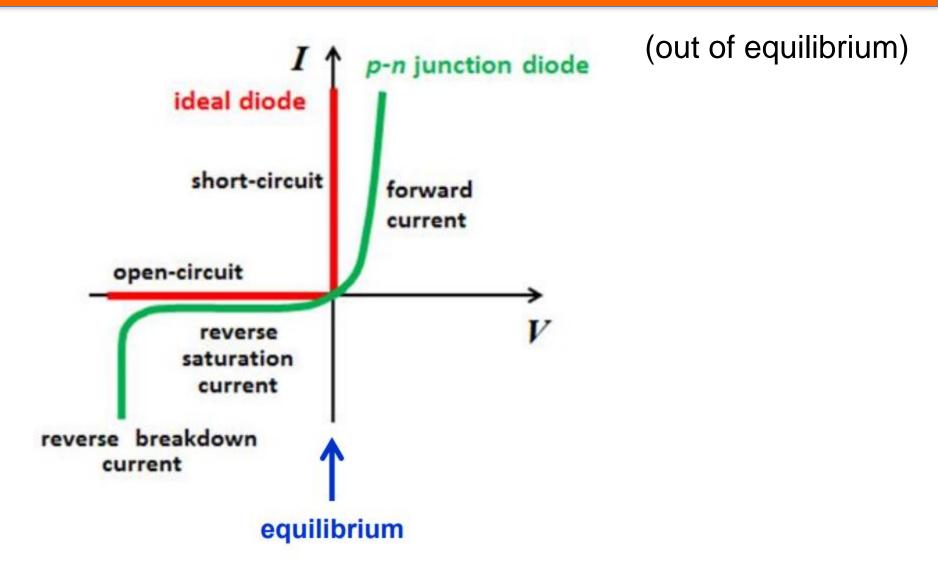
Also:

$$\frac{\frac{r_p}{p_n} = \exp\left(\frac{q v_0}{k_B T}\right)}{\frac{n_n}{n_p} = \exp\left(\frac{q v_0}{k_B T}\right)}$$

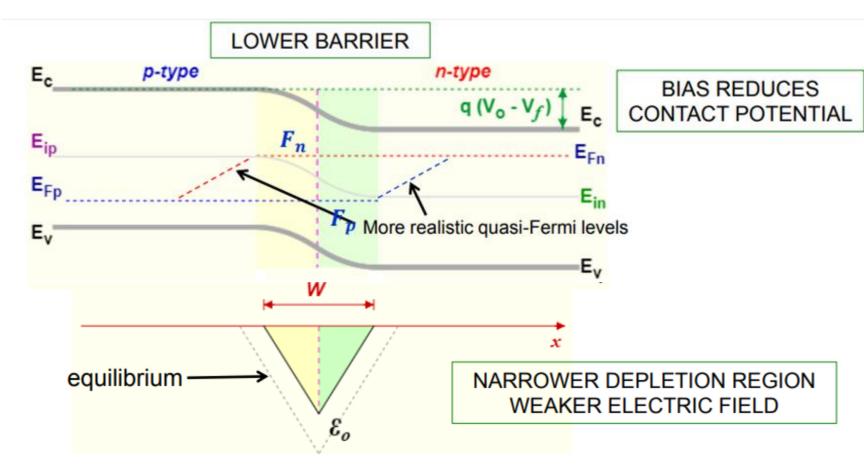
In the regions far away from the junction

$$n_p = \frac{n_i^2}{p_p}$$

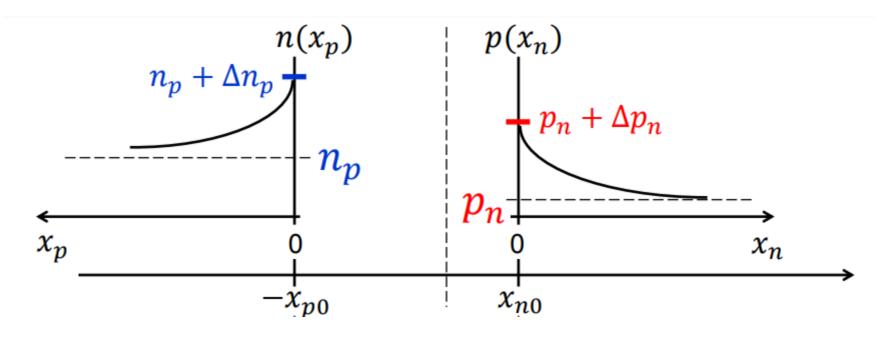
$$n_n = \frac{n_i^2}{p_n}$$



Forward bias



Forward bias



$$\Delta p_n = p_n \left[\exp\left(\frac{qV}{k_B T}\right) - 1 \right]$$

$$I = I_p(x_n = 0) - I_n(x_p = 0)$$

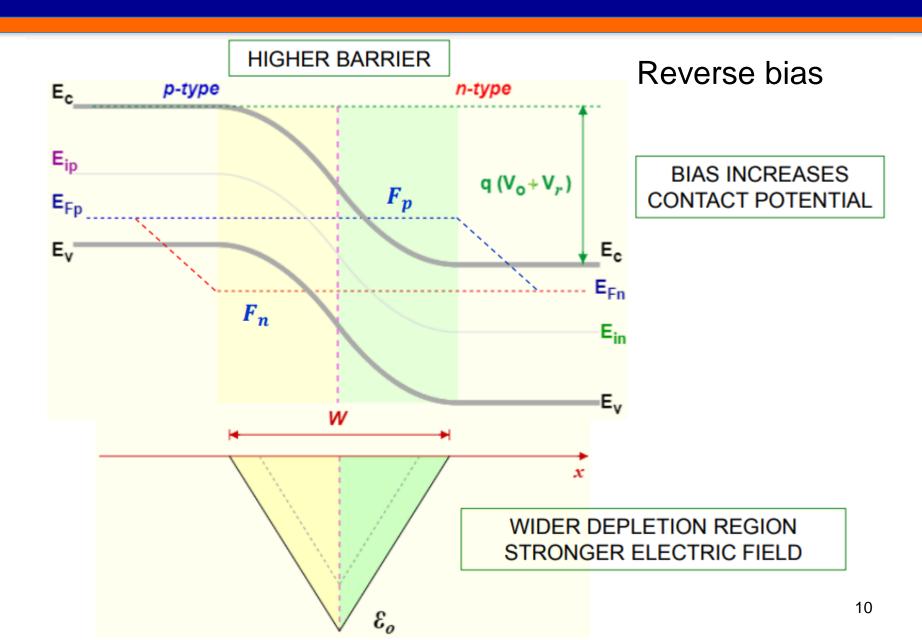
Forward bias

$$= qA \frac{D_p}{L_p} p_n \left[\exp\left(\frac{qV}{k_B T}\right) - 1 \right] + qA \frac{D_n}{L_n} n_p \left[\exp\left(\frac{qV}{k_B T}\right) - 1 \right]$$

$$= qA \left(\frac{D_p}{L_p} p_n + \frac{D_n}{L_n} n_p\right) \left[\exp\left(\frac{qV}{k_B T}\right) - 1\right]$$

$$I_0$$

$$I = I_0 \left[\exp\left(\frac{qV}{k_B T}\right) - 1 \right]$$



Reverse bias

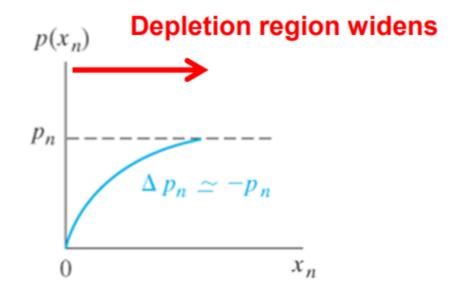
$$V = -V_r$$

$$\Delta n_p \simeq -n_p$$

$$x_p$$

$$n(x_p)$$

$$n_p \simeq -n_p$$



Reverse bias

Reverse bias
$$V = -V_r$$
 with $V_r \gg k_B T/q$

$$\Delta p_n = p_n \left[\exp\left(-\frac{qV_r}{k_B T}\right) - 1 \right] \approx -p_n$$

$$\Delta n_p = n_p \left[\exp\left(-\frac{qV_r}{k_B T}\right) - 1 \right] \approx -n_p$$

Reverse bias

Reverse bias $V = -V_r$

$$I = I_0 \left[\exp\left(-\frac{qV_r}{k_B T}\right) - 1 \right]$$

$$I = -I_0 = -qA\left(\frac{D_p}{L_p}p_n + \frac{D_n}{L_n}n_p\right)$$

$$W = \sqrt{\frac{2\varepsilon V_0}{q} \left(\frac{N_A + N_D}{N_A N_D}\right)}$$

$$W = \sqrt{\frac{2\varepsilon(V_0 - V_f)}{q} \left(\frac{N_A + N_D}{N_A N_D}\right)}$$

$$W = \sqrt{\frac{2\varepsilon(V_0 + V_r)}{q} \left(\frac{N_A + N_D}{N_A N_D}\right)}$$

Reverse Bias

Junction Capacitance

$$|Q| = qAx_{n0}N_D = qAx_{p0}N_A$$
 $x_{n0} = \frac{N_A}{N_A + N_D}W$
 $x_{p0} = \frac{N_D}{N_A + N_D}W$

$$|Q| = qA \frac{N_D N_A}{N_A + N_D} W$$

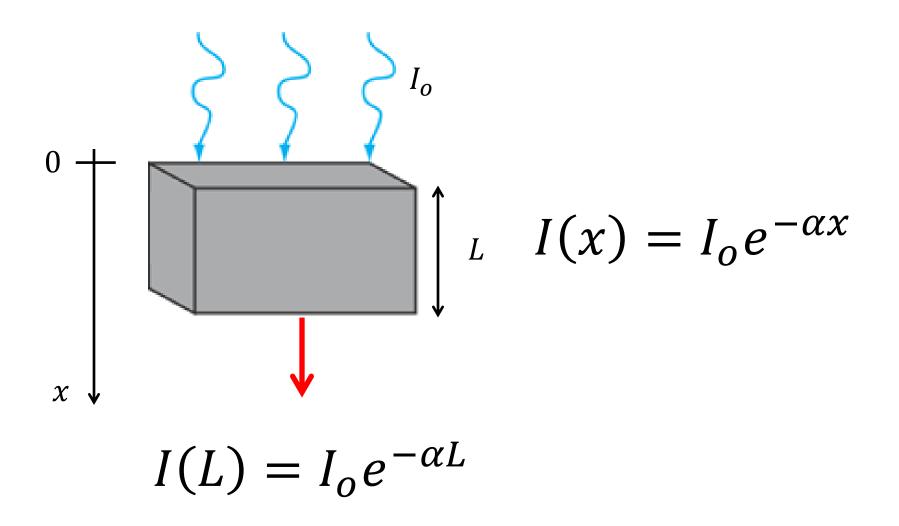
Junction Capacitance

$$|Q| = qA \frac{N_D N_A}{N_A + N_D} W =$$

$$= \epsilon A \sqrt{\frac{2q}{\epsilon}} (V_0 - V) \frac{N_D N_A}{N_A + N_D}$$

$$C_{j} = \left| \frac{dQ}{d(V_{0} - V)} \right| = \epsilon A \sqrt{\frac{q}{2\epsilon(V_{0} - V)} \frac{N_{D}N_{A}}{N_{A} + N_{D}}}$$

Absorption of light in material



Absorption of light in material

Quantum efficiency

ratio of the number of electrons in the external circuit produced by an <u>incident photon</u> of a given wavelength

Internal Quantum Efficiency (IQE)

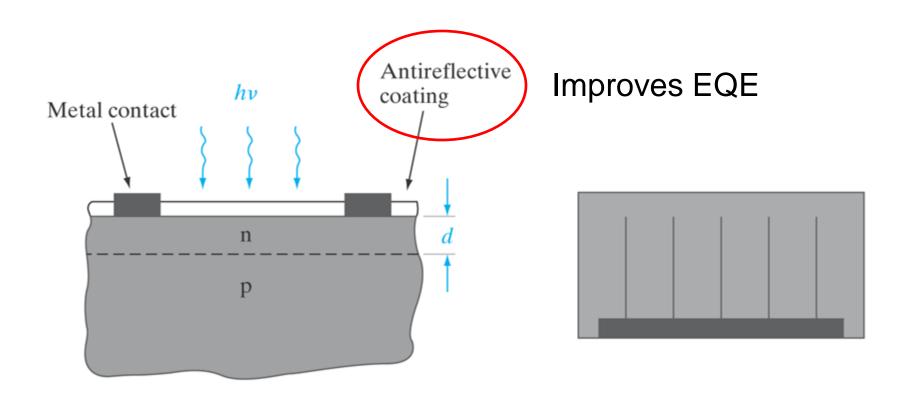
Considers only photons which have been able to enter the material

External Quantum Efficiency (EQE)

Considers all impinging photons, including those who are not able to enter the material (for instance, photons which are reflected away from the material surface)

Solar Cell

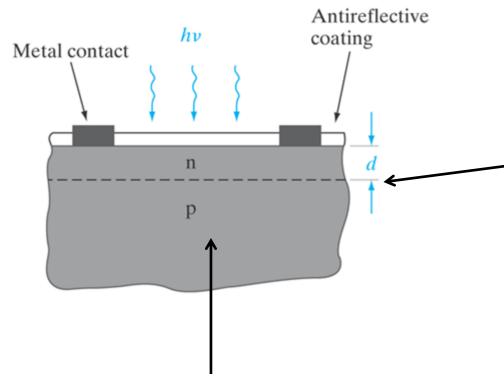
Solar Cell – is made of a p-n junction Both electrons and holes contribute to power generation



Also, mirrors could be used to improve the EQE

Solar Cell

Design of Solar Cell is a compromise



Junction depth should be close to surface so intensity of incident light is as high as possible

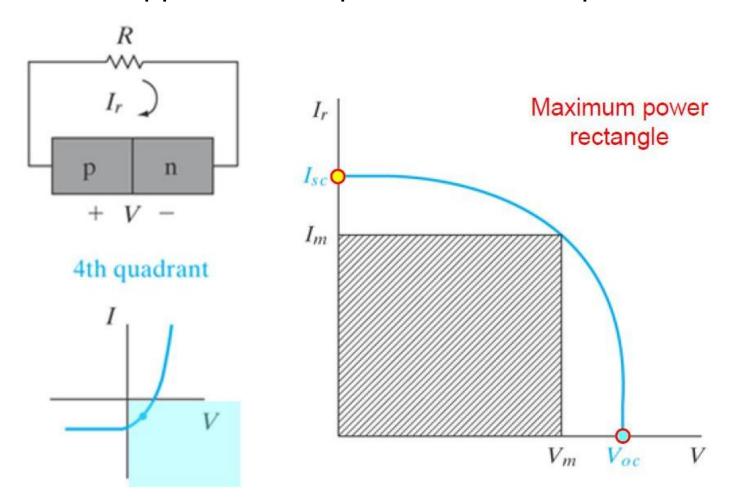
Junction depth should be less than L_p to allow holes generated near the surface to reach the junction

Thickness of p-region: we want also generated electrons to be able to diffuse to the depletion region.

Could make p-region thin and place a mirror at the bottom to send light back inside the device

Optoelectronic devices – from Lectures 28

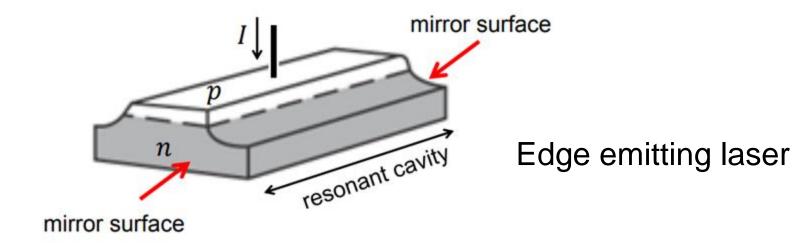
External resistor should not be too high or too low, so that one can approach the optimal maximum power rectangle



Optoelectronic devices

Semiconductor lasers

Simple p-n junction (e.g., GaAs)



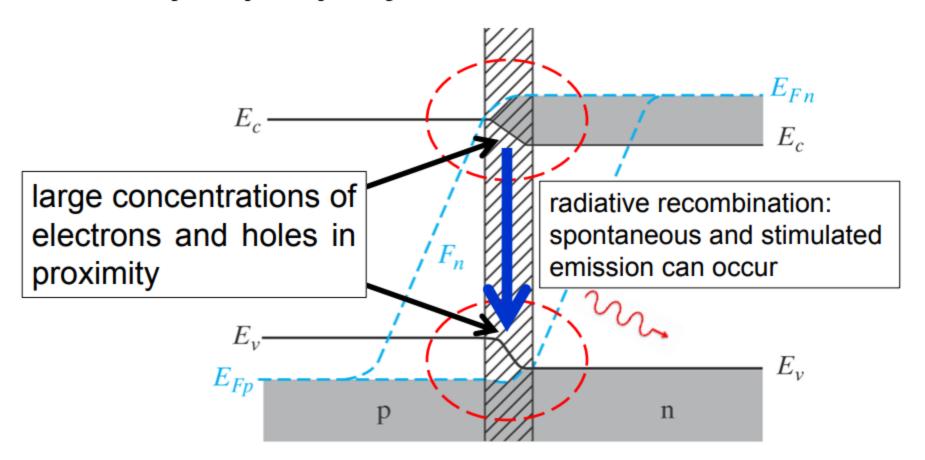
Two ingredients are needed to make a laser:

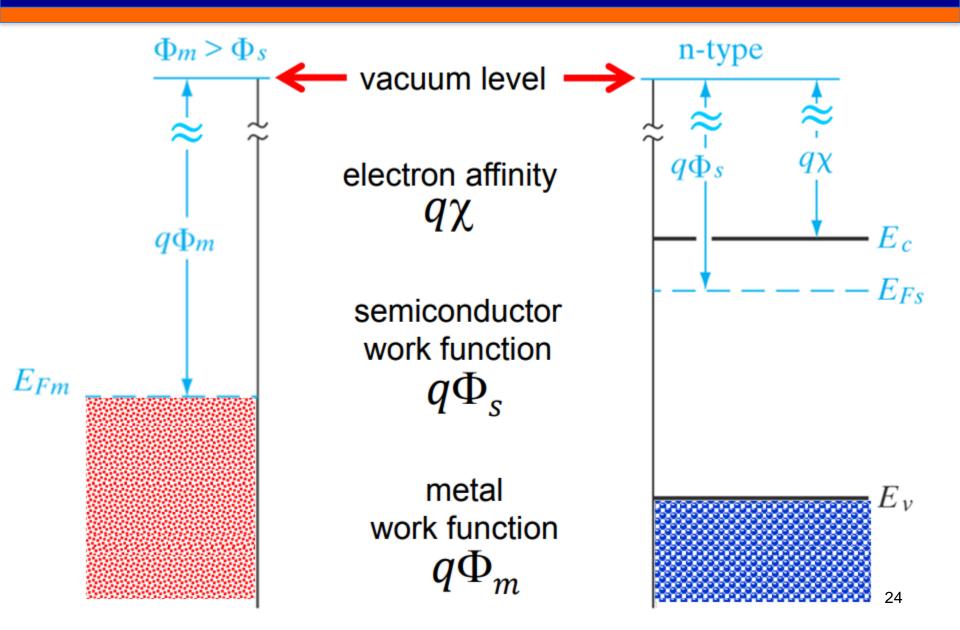
- population inversion (stable population of excited states)
- resonant cavity to build up a coherent photon population for stimulated emission to occur (coherence)

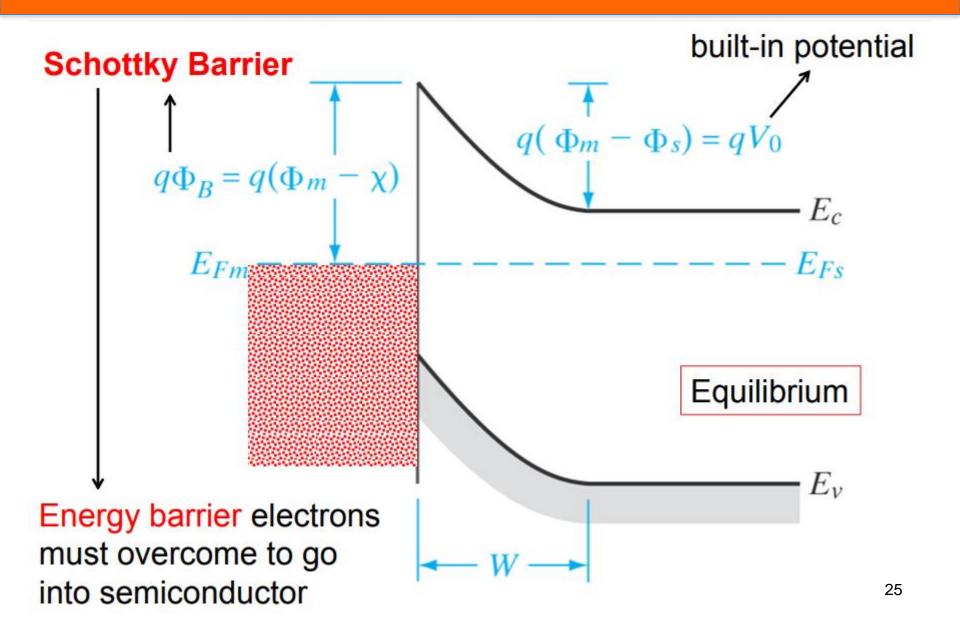
Optoelectronic devices

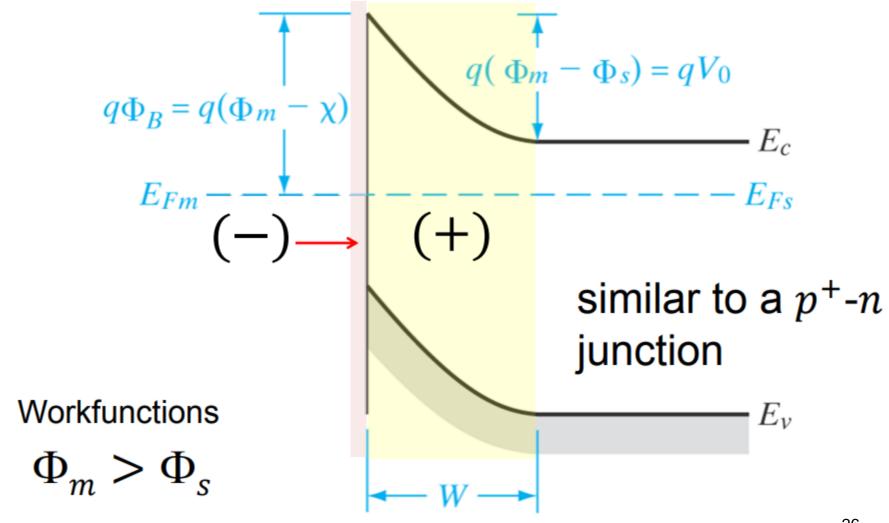
Semiconductor lasers

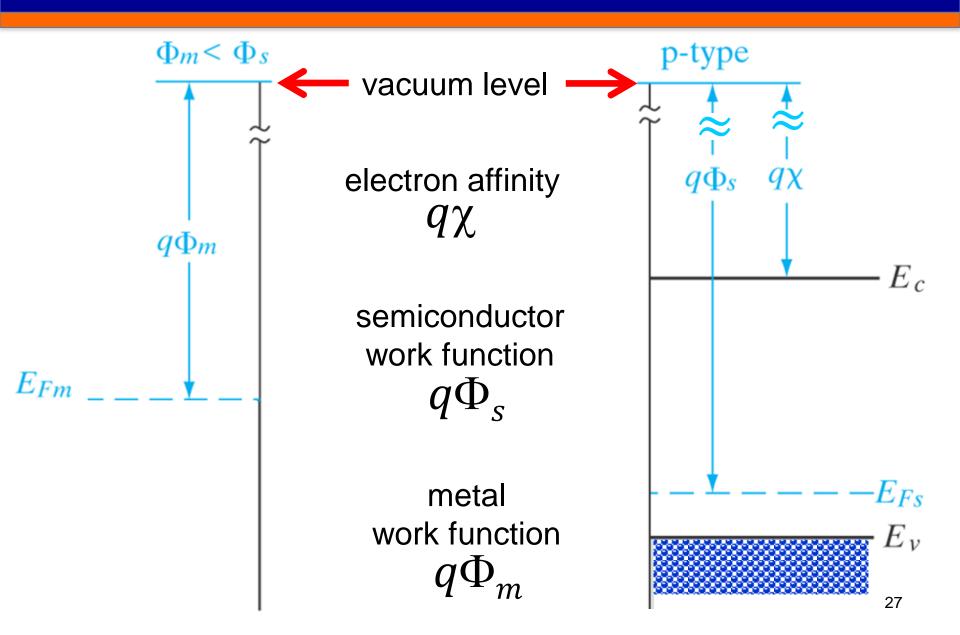
Heavily doped p-n junction in forward bias

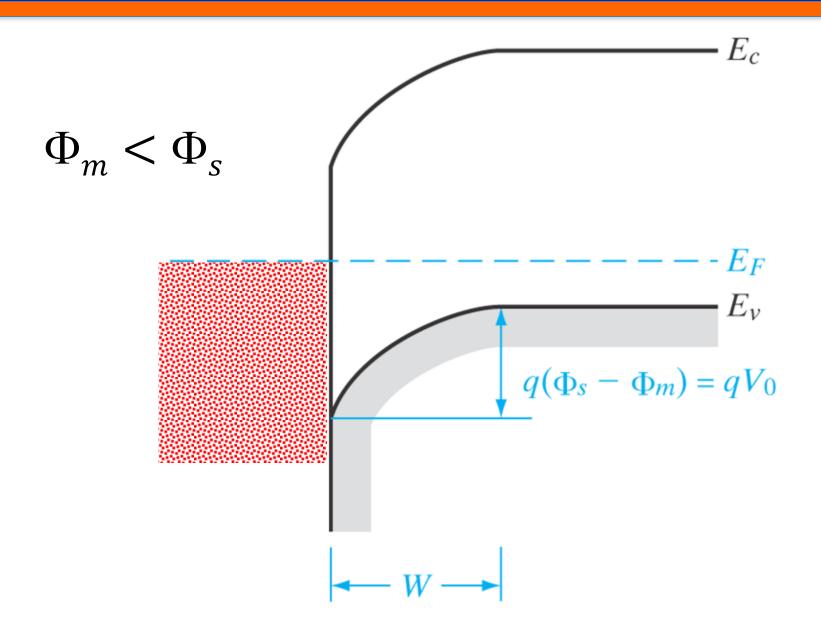


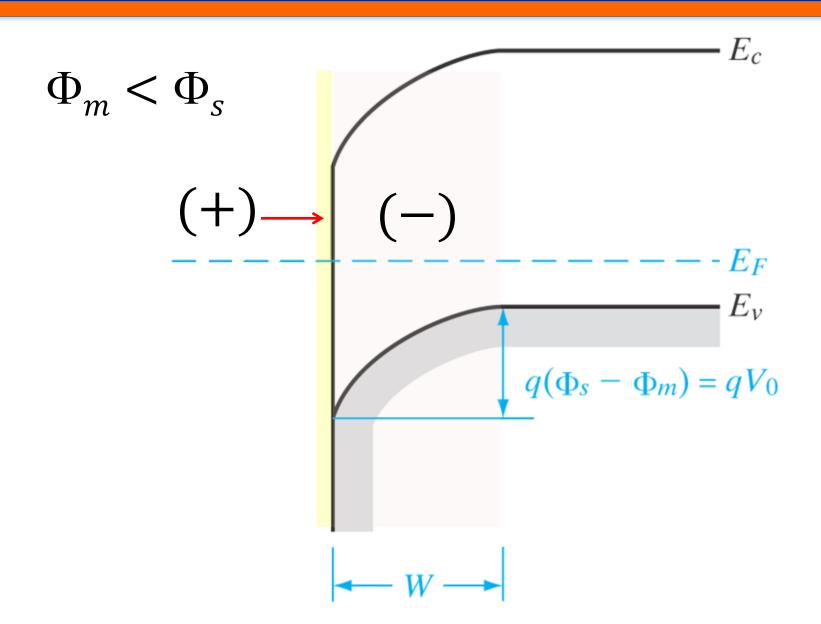




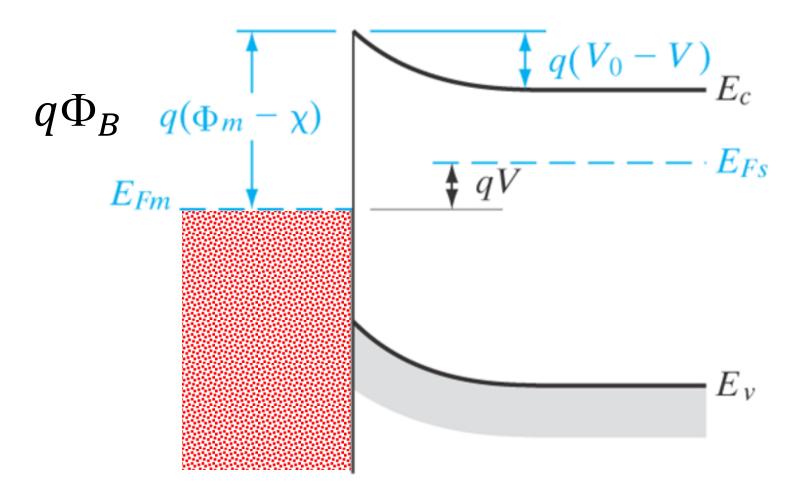




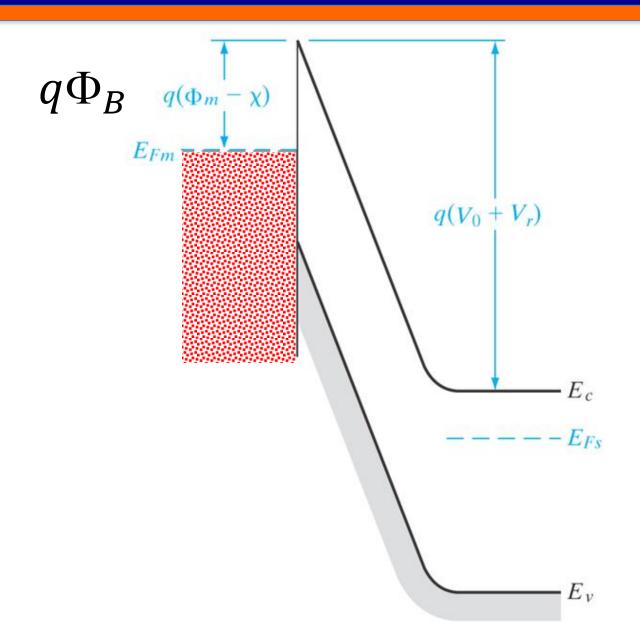


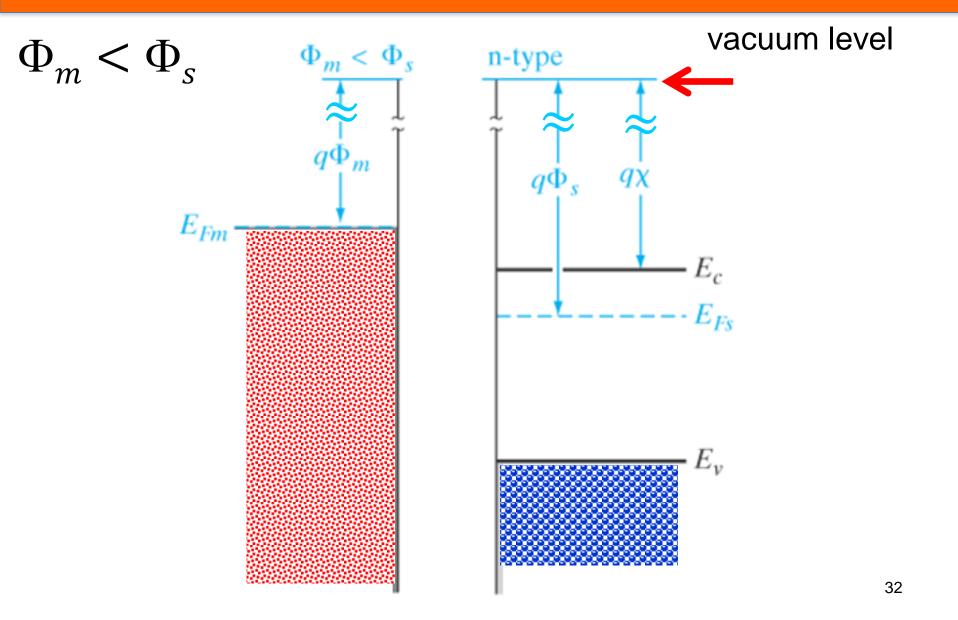


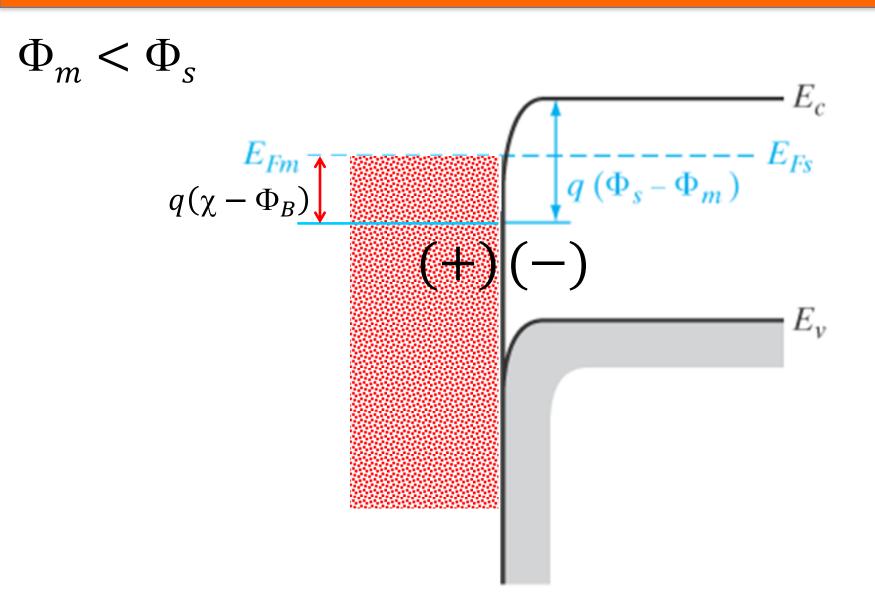
Forward Bias

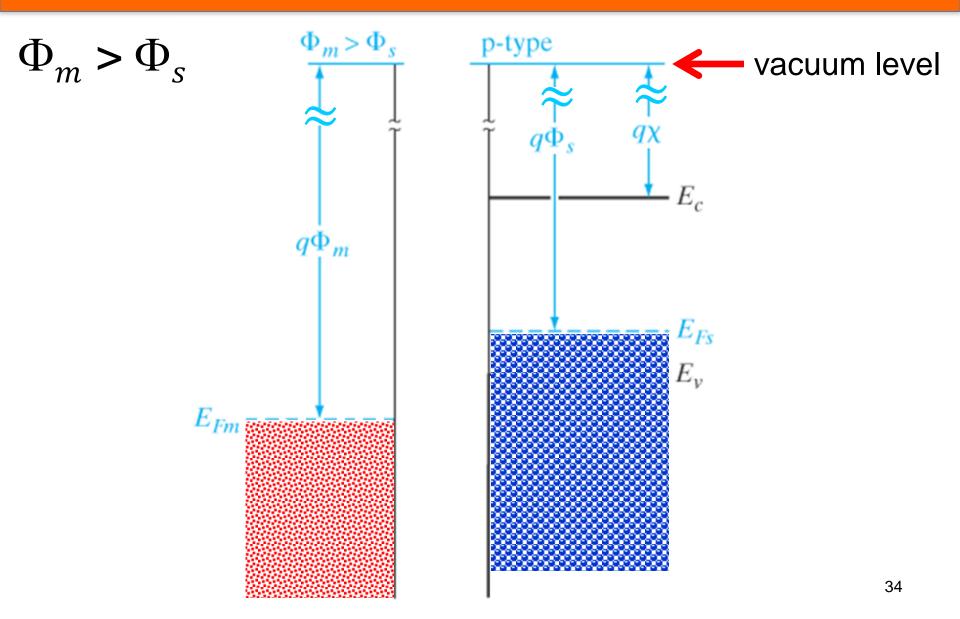


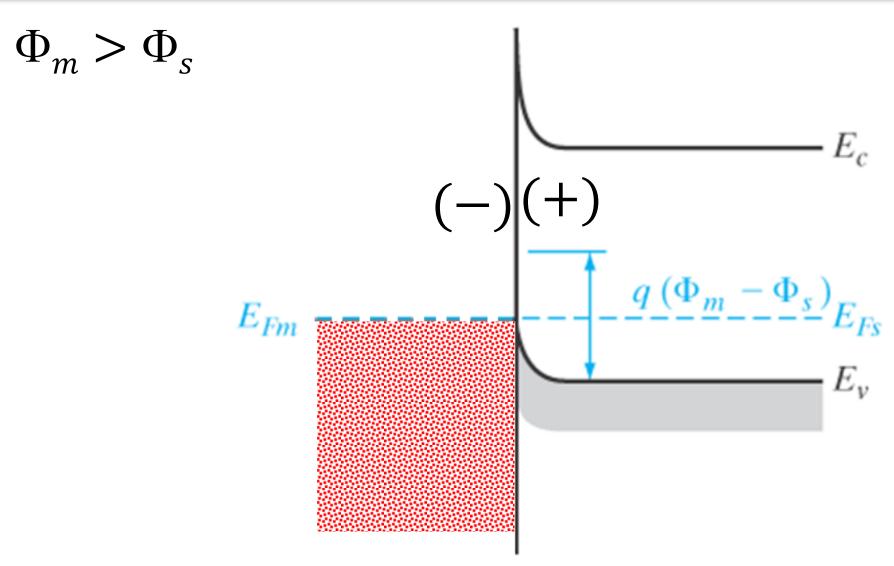
Reverse Bias



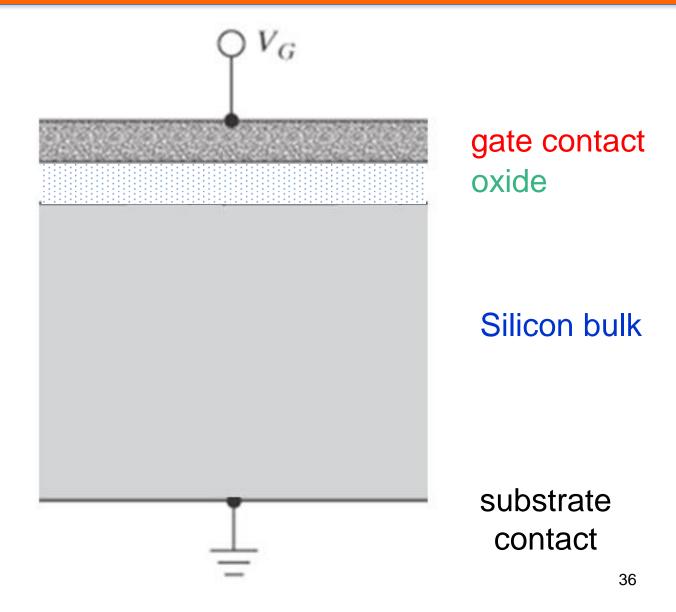




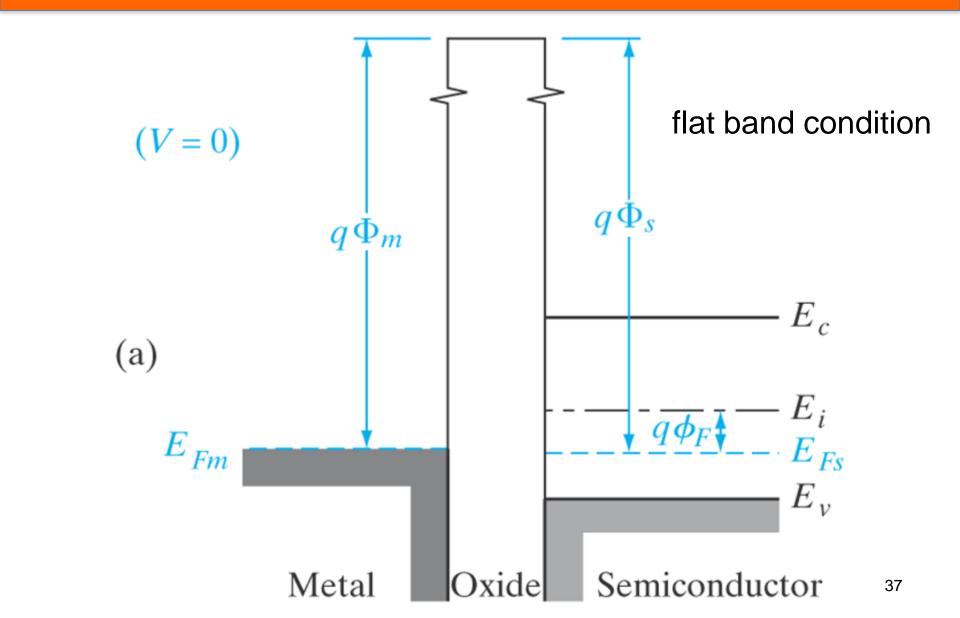




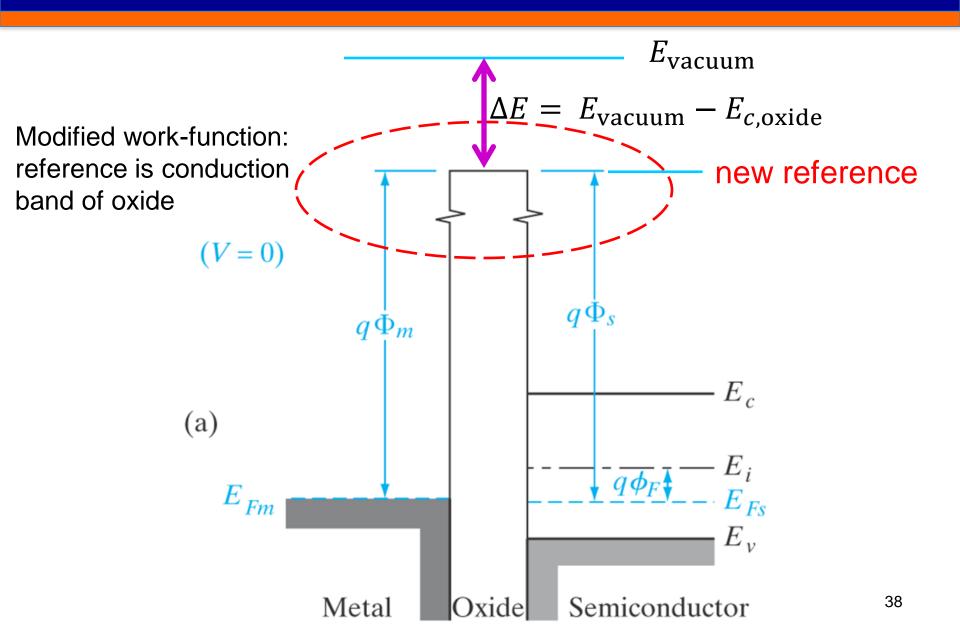
Ideal MOSFET Capacitor



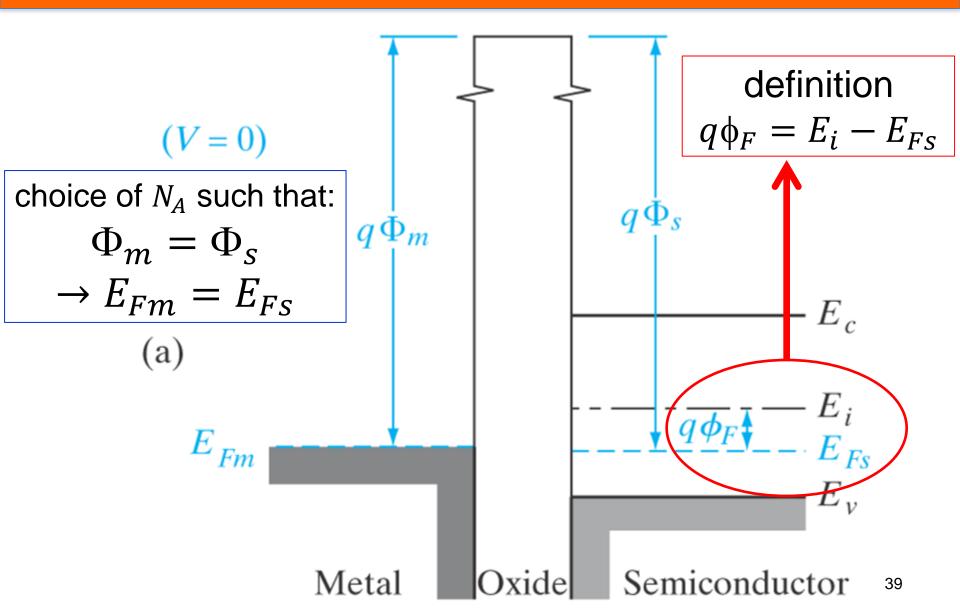
Ideal MOSFET Capacitor (Equilibrium)



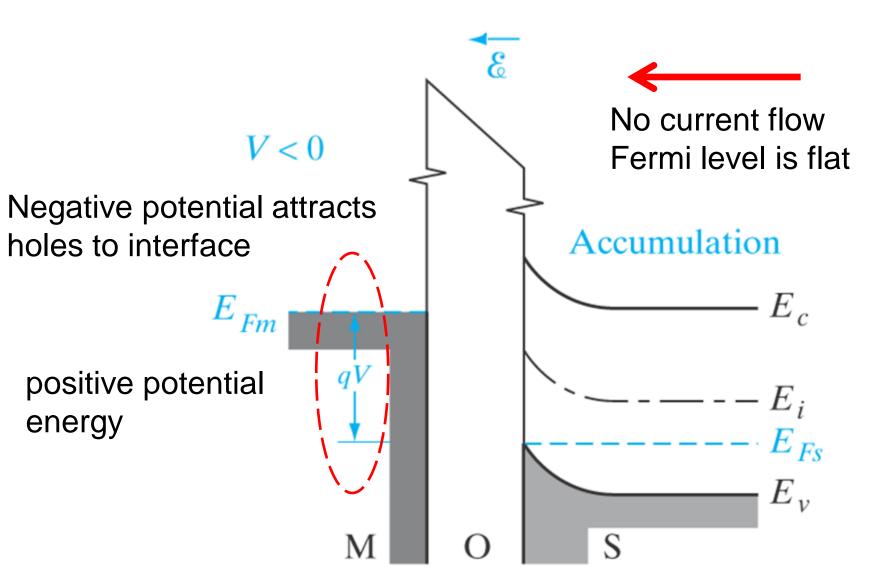
Ideal MOSFET Capacitor (Equilibrium)



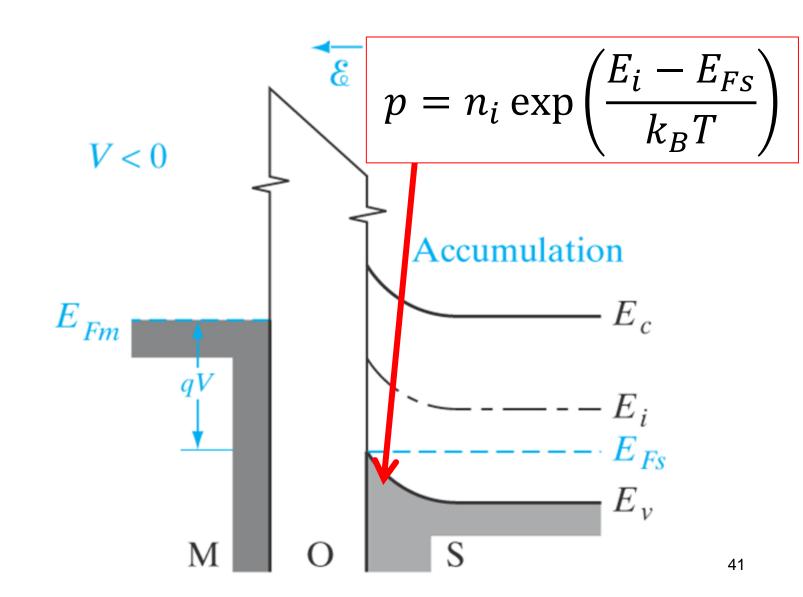
Ideal MOSFET Capacitor (Equilibrium)



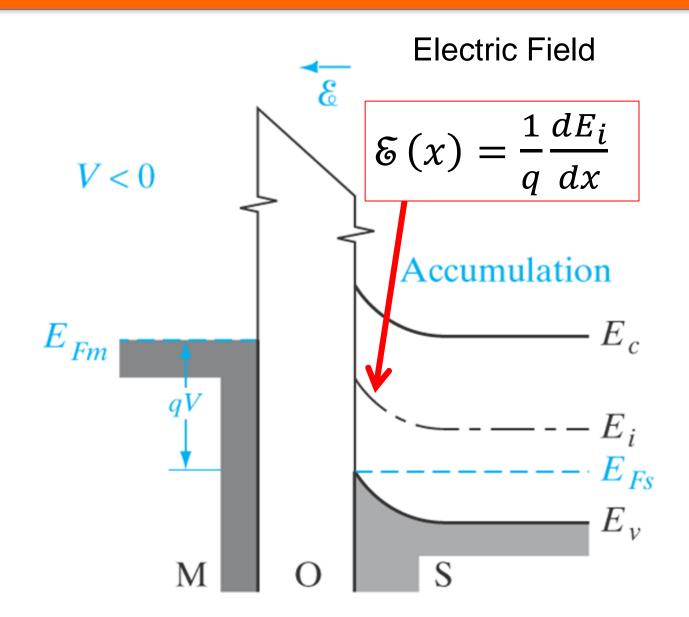
Ideal MOSFET Capacitor (Accumulation)



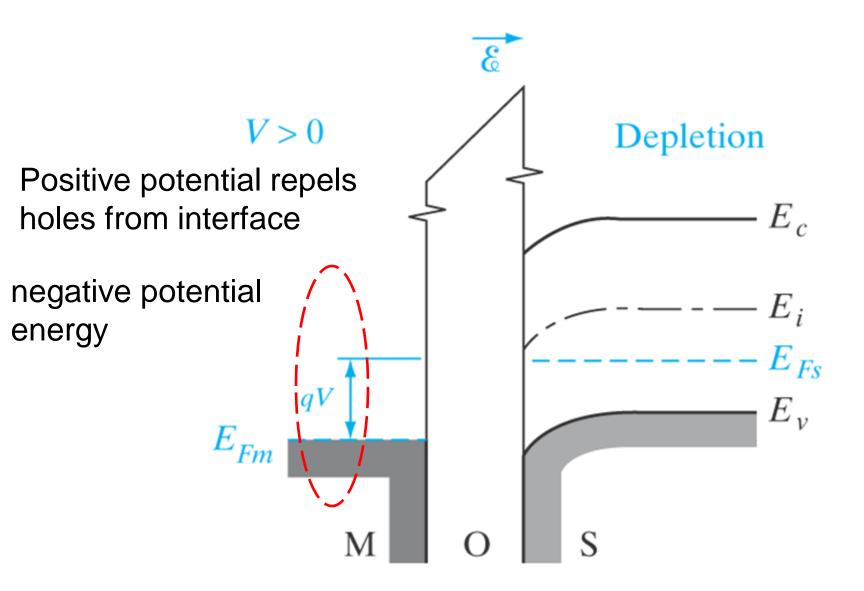
Ideal MOSFET Capacitor (Accumulation)



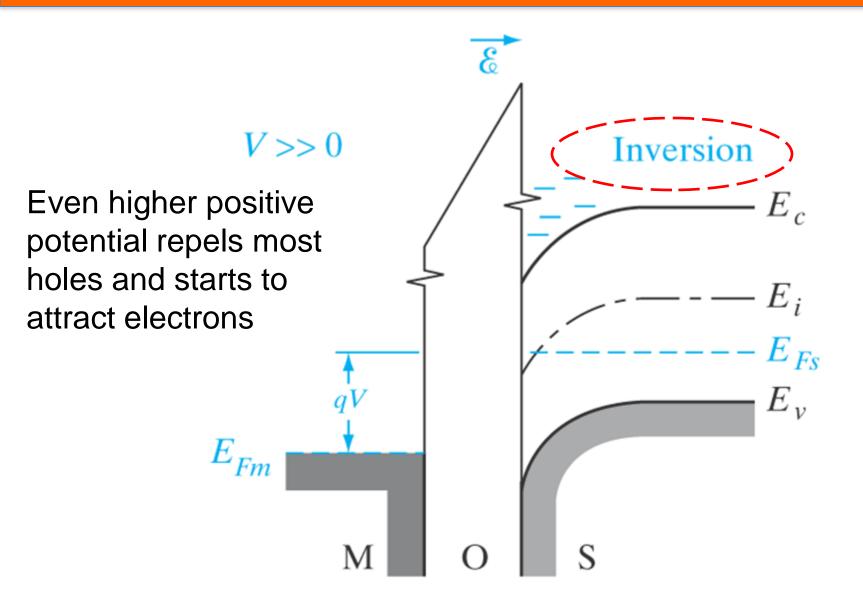
Ideal MOSFET Capacitor (Accumulation)



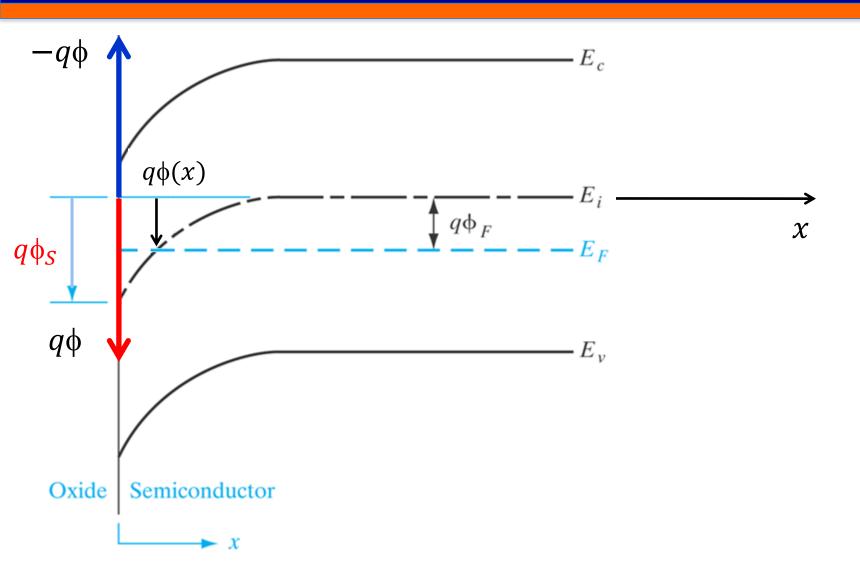
Ideal MOSFET Capacitor (Depletion)



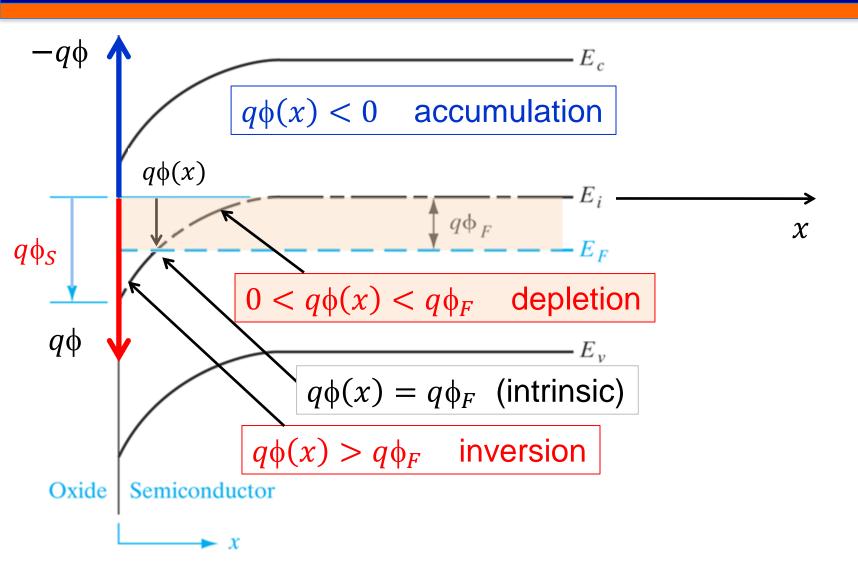
Ideal MOSFET Capacitor (Inversion)



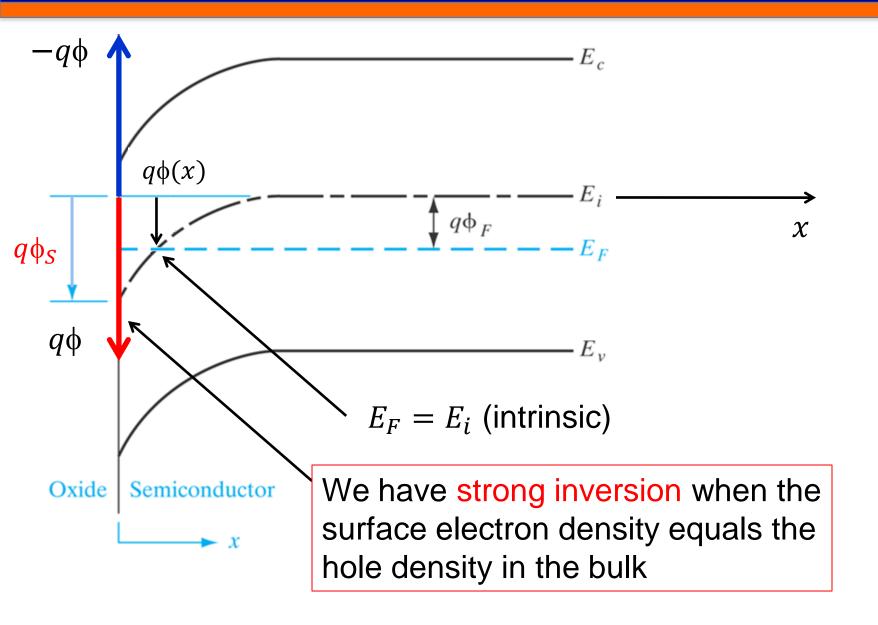
Potential energy system of reference



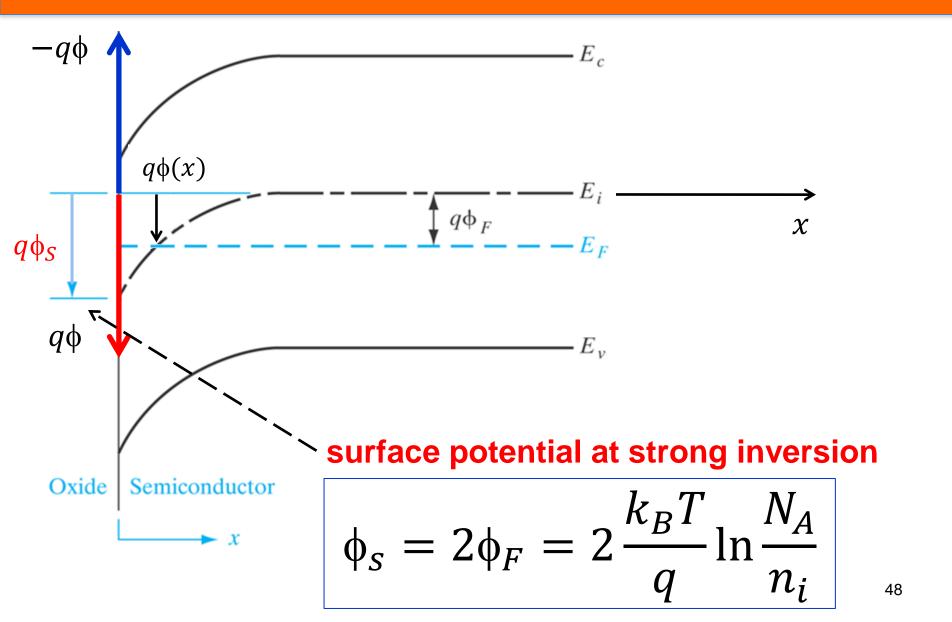
Potential energy system of reference



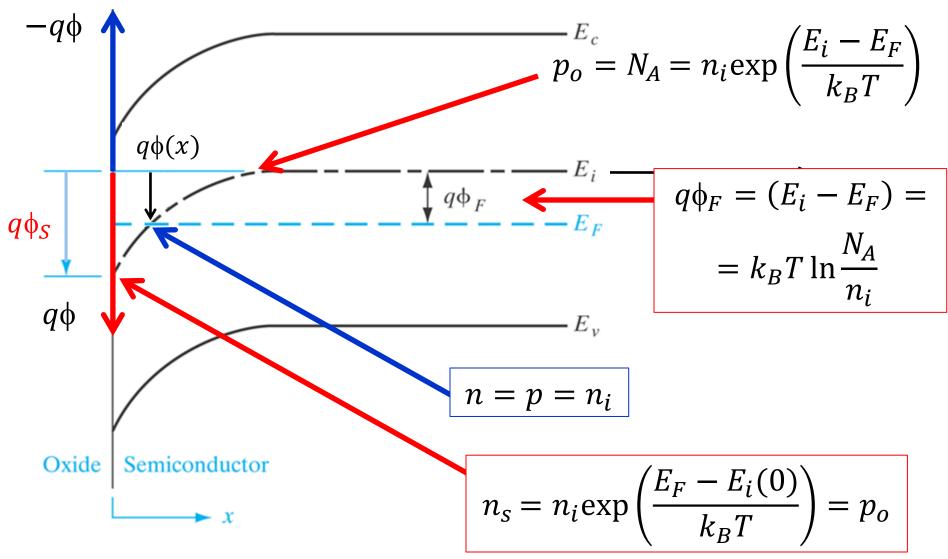
Strong inversion condition (definition)



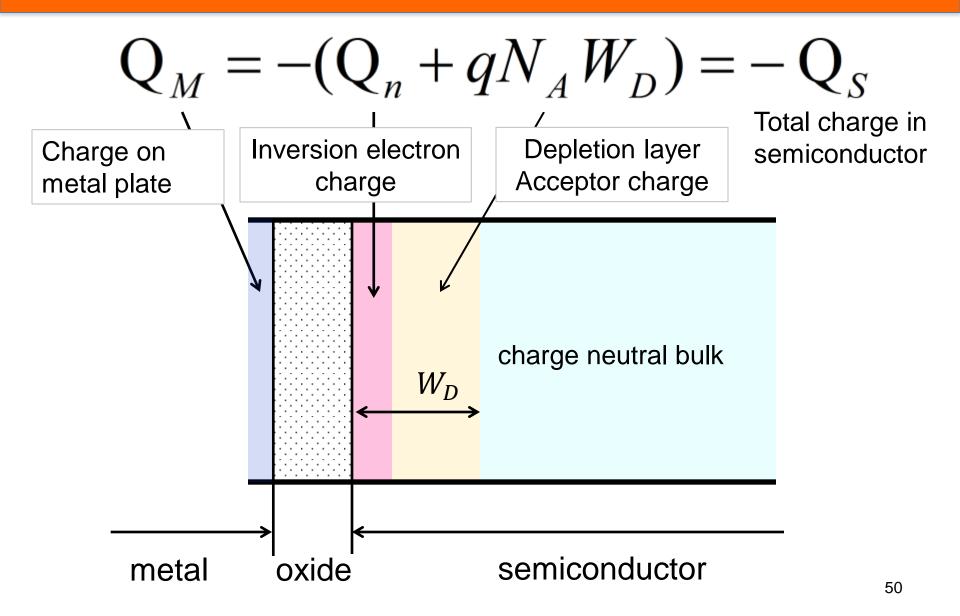
Strong inversion condition (definition)



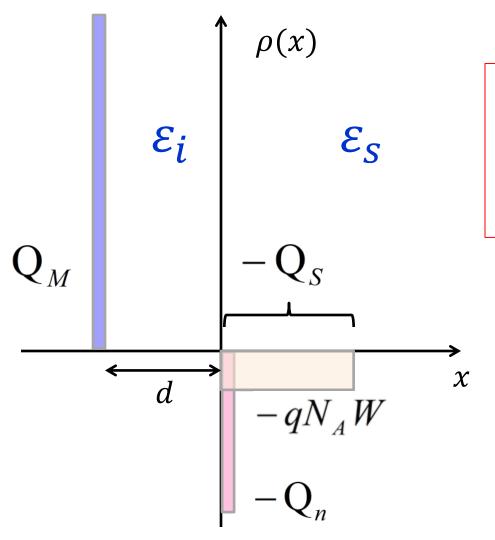
Strong inversion condition



Charge density distribution



Charge density distribution



d =thickness of oxide

Oxide capacitance (unit area)

$$C_i = \frac{\varepsilon_i}{d}$$

Voltage across oxide

$$V_i = \frac{-Q_S}{C_i} = \frac{-Q_S d}{\varepsilon_i}$$

Applied voltage

$$V = V_i + \phi_s$$

Threshold Voltage (ideal case)

$$Q_D = -qN_AW = 2\sqrt{q\epsilon_S N_A \phi_F}$$

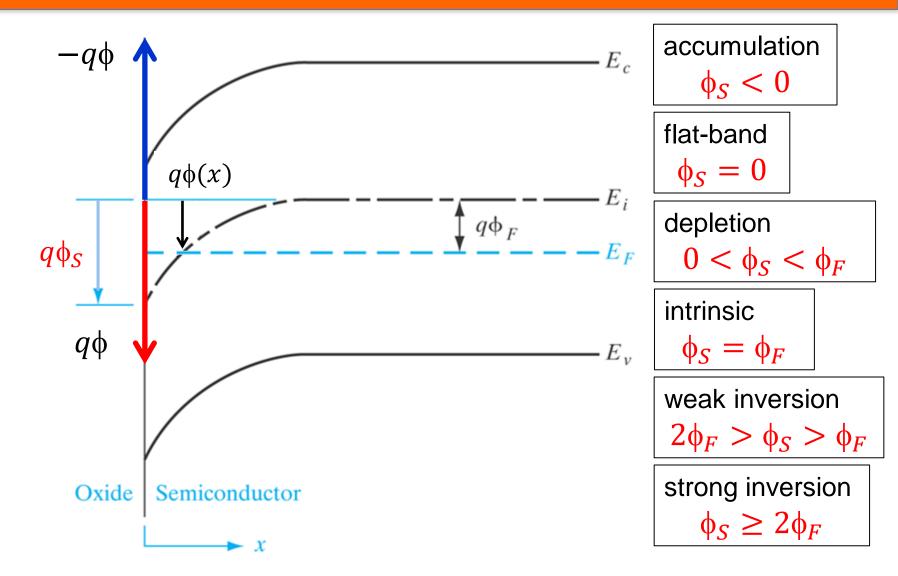
maximum value

Depletion layer charge
$$V_T = -\frac{Q_d}{C_i} + 2\phi_F$$

Voltage drop Strong inversion across oxide condition

(Assuming that depletion charge dominates Q_s at threshold)

Summary of conditions – surface potential



Real Surface effects – Work function difference

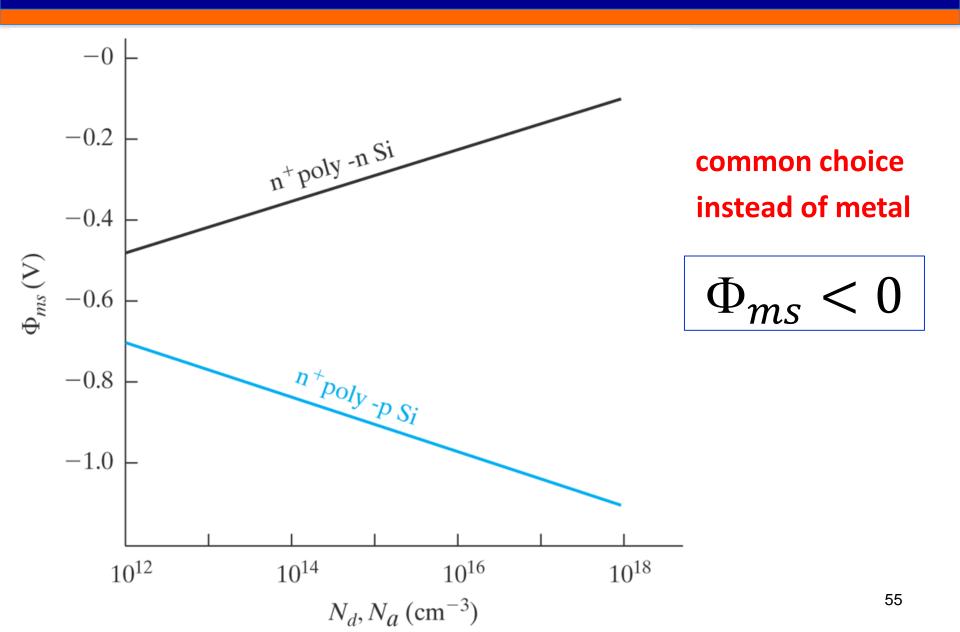
• We assumed in the previous analysis for simplicity $\Phi_m = \Phi_{\scriptscriptstyle S}$

$$\Phi_m \neq \Phi_s$$

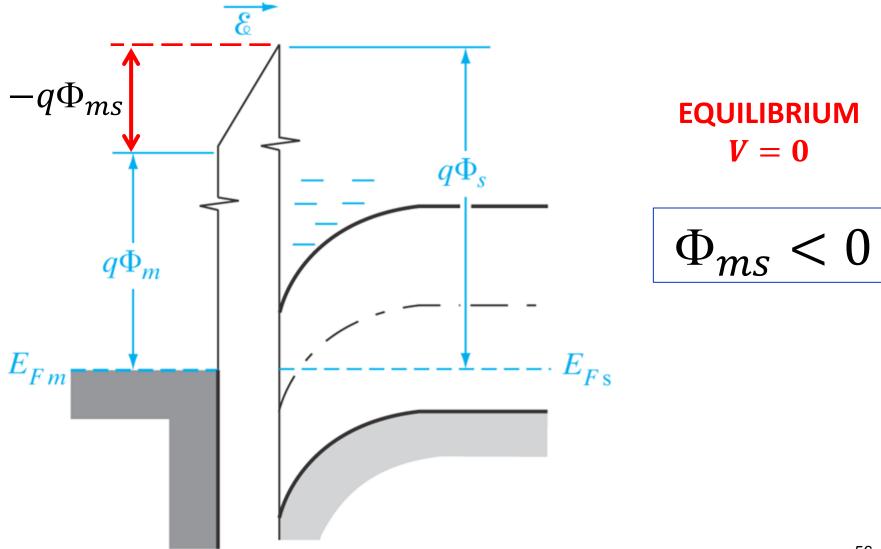
It is convenient to define the quantity

$$\Phi_{ms} = \Phi_m - \Phi_s$$

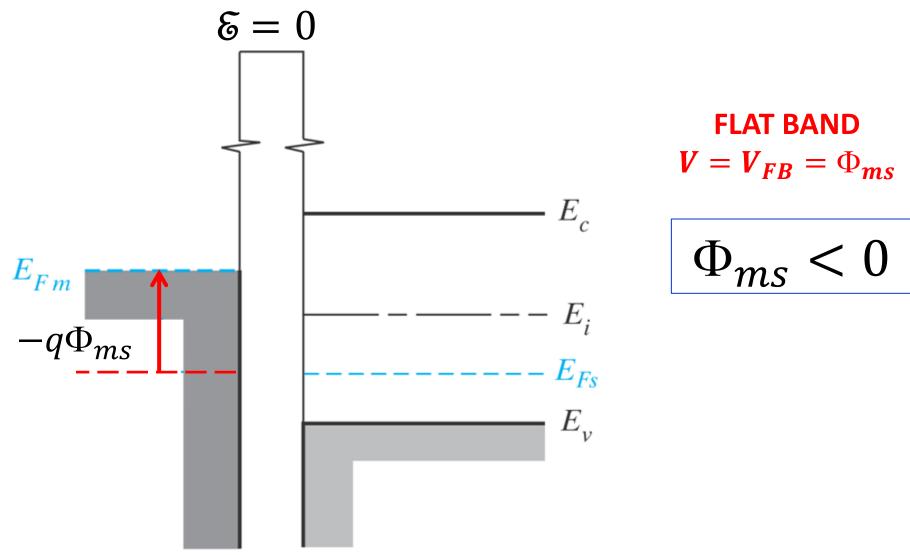
n+ plus polysilicon for gate electrode



Effect of negative workfunction difference

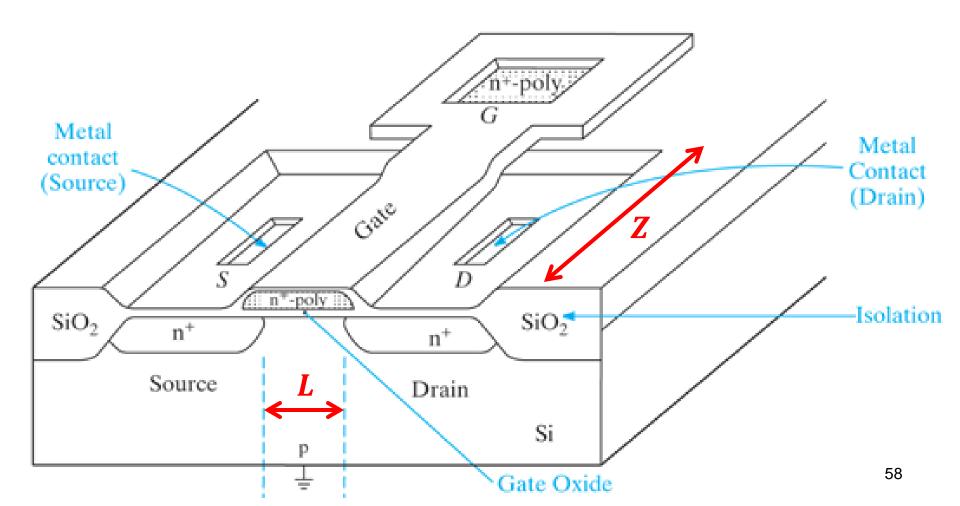


Apply $V_{FB}=\Phi_{ms}$ to obtain flat band



The MOSFET

When an inversion layer is formed under the gate, current can flow from drain to sourse (n-channel device)



MOSFET – channel conductance at x

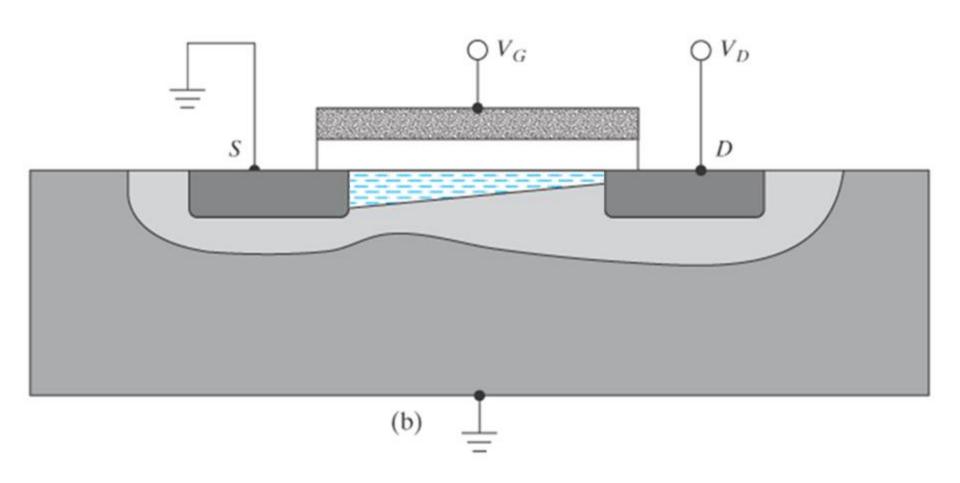
$$\sigma(x) = \overline{\mu_n} Q_n(x) Z/dx$$

 $\overline{\mu_n}$ surface electron mobility

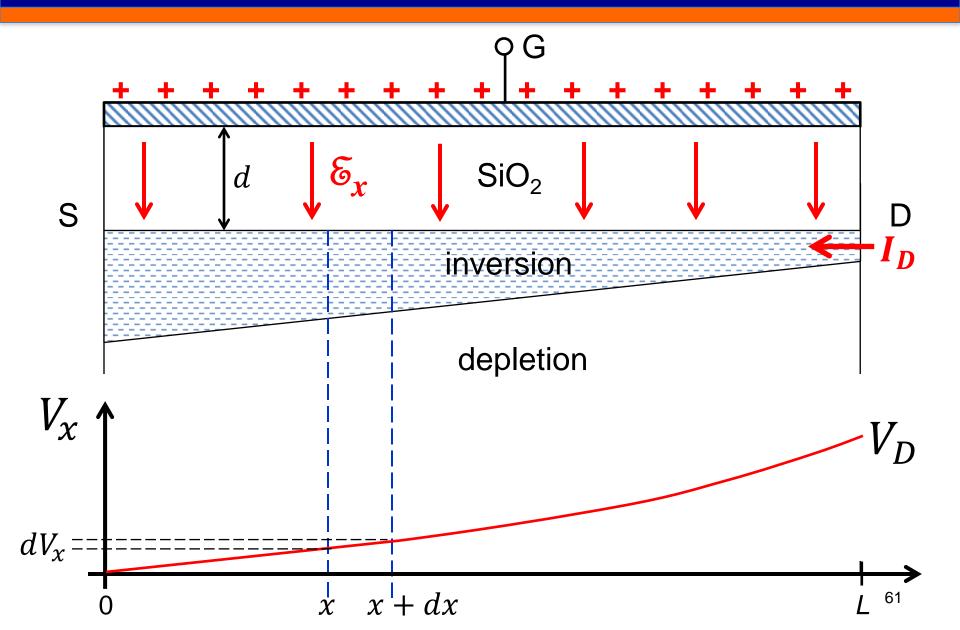
mobility in the narrow layer close to the surface is much lower than in the free bulk due to surface roughness irregularities and quantum effects

Z width of the channel

MOSFET – channel current at x



MOSFET – channel current at x



MOSFET – Drain Current

$$I_D dx = \overline{\mu_n} Z |Q_n(x)| dV_x$$
$$Q_n(x) = -C_i [V_G - V_T - V_x]$$

$$\int_{0}^{L} I_D dx = \overline{\mu_n} Z C_i \int_{0}^{V_D} (V_G - V_T - V_X) dV_X$$

$$I_D = \left[\frac{\overline{\mu_n} Z C_i}{L}\right] \left[(V_G - V_T) V_D - \frac{1}{2} V_D^2 \right]$$

MOSFET – Conductance of channel

linear region

$$I_D = \frac{\overline{\mu_n} Z C_i}{L} \left[(V_G - V_T) V_D - \frac{1}{2} V_D^2 \right]$$

$$V_D \ll (V_G - V_T)$$
 (linear region)
 $V_G > V_T$ (channel condition)

$$g = \frac{\partial I_D}{\partial V_D} = \frac{\overline{\mu_n} Z C_i}{L} (V_G - V_T)$$
$$= k_N(\text{lin.}) (V_G - V_T)$$

MOSFET – Conductance of channel

linear region

$$I_D = \frac{\overline{\mu_n} Z C_i}{L} \left[(V_G - V_T) V_D - \frac{1}{2} V_D^2 \right]$$

$$V_D \ll (V_G - V_T)$$
 (linear region) $V_G > V_T$ (channel condition)

For small drain voltage, you can use this approximation

$$I_D = \frac{\overline{\mu_n} Z C_i}{L} [(V_G - V_T) V_D]$$

MOSFET – Saturation

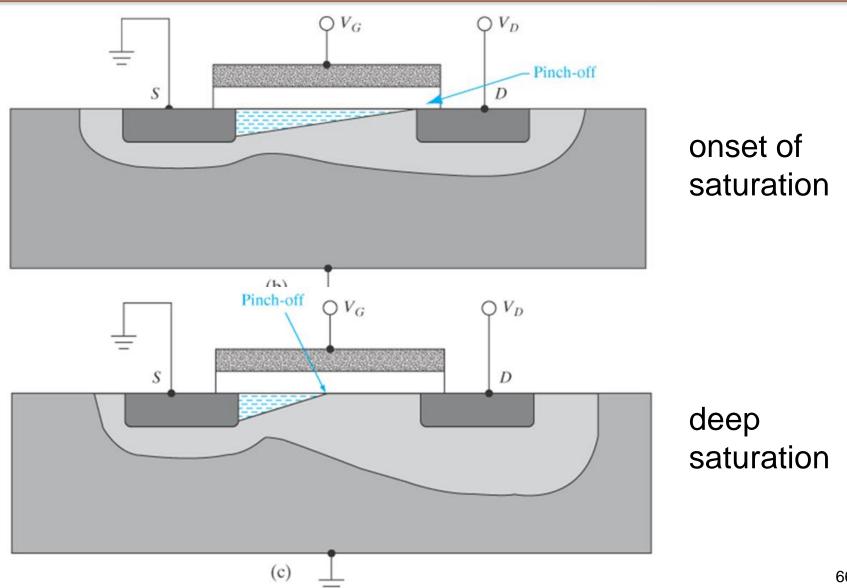
As the drain voltage is increased, the voltage across the oxide decreases near the drain as does Q_S .

The channel goes in "pinch off" at the drain and current saturates

in saturation condition we have approximately

$$V_D(\text{sat.}) \approx (V_G - V_T)$$

MOSFET – Saturation



MOSFET – Example

n-channel MOSFET
$$d=10~\mathrm{nm}=10^{-6}~\mathrm{cm}$$
 $V_T=0.6\mathrm{V}$ $Z=25\mu\mathrm{m}$ $L=1~\mu\mathrm{m}$ $\overline{\mu_n}=200~\mathrm{cm^2/V\cdot s}$

$$C_i = \frac{\epsilon_i}{d} = \frac{3.9 \times 8.85 \times 10^{-14}}{10^{-6}}$$

= 3.45 × 10⁻⁷ F/cm² (unit area)

$$k_N = \frac{\overline{\mu_n} ZC_i}{L} = \frac{200 \times 25 \times 10^{-4} \times 3.45 \times 10^{-7}}{10^{-4}} = .001725$$

$$V_G = 5 \text{ V}$$
 $V_D = 0.1 \text{ V}$ $V_D = 0.1 \text{ V} < (V_G - V_T) = 4.4 \text{ V}$ $I_D = \frac{\overline{\mu_n} Z C_i}{I} \left[(V_G - V_T) V_D - \frac{1}{2} V_D^2 \right] =$ linear region

 7.59×10^{-4}

$$L [(3 - 77)^{1/2} 2^{1/2}]$$

$$= 0.001725 \times ((5 - 0.6) \times 0.1 - 0.5 \times 0.1^{2}) = 7.5 \times 10^{-4} \text{A}$$

MOSFET – Example

n-channel MOSFET $d=10~\mathrm{nm}=10^{-6}~\mathrm{cm}$ $V_T=0.6\mathrm{V}$ $Z=25\mu\mathrm{m}$ $L=1~\mu\mathrm{m}$ $\overline{\mu_n}=200~\mathrm{cm^2/V\cdot s}$

$$V_G = 3 \text{ V}$$
 $V_D = 5 \text{ V}$

$$V_D = 5 \text{ V} > (V_G - V_T) = 2.4 \text{ V}$$

$$V_D(\text{sat.}) = 2.4 \text{ V}$$
 saturation region

$$k_N = \frac{\overline{\mu_n} Z C_i}{L} = .001725$$

$$I_D = \frac{\overline{\mu_n} Z C_i}{L} \Big[(V_G - V_T) V_D(\text{sat.}) - \frac{1}{2} V_D^2(\text{sat.}) \Big] =$$

$$= 0.001725 \times ((3 - 0.6) \times 2.4 - 0.5 \times 2.4^2)$$

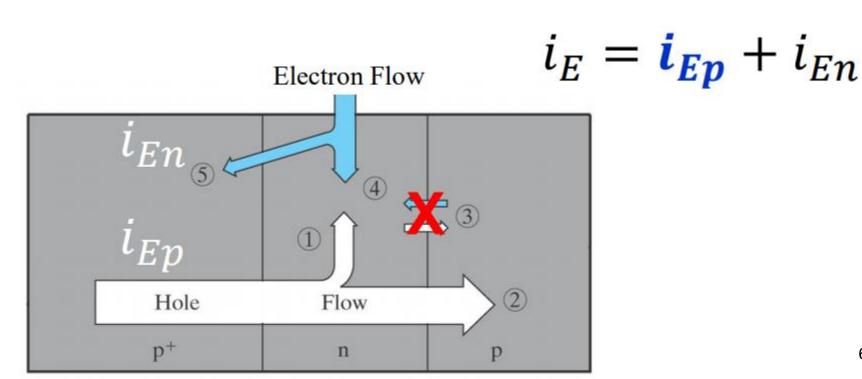
$$= 4.968 \times 10^{-3} \text{ A}$$

$$V_D = 7 \text{ V} > (V_G - V_T) \rightarrow V_D(\text{sat.}) = 2.4 \text{ V} \rightarrow I_D \text{ is the same}$$

Bipolar Junction Transistor (BJT)

Here is material with just a few essentials

Amplification parameters are usually defined assuming that the reverse saturation current of the reverse biased base-collector junction is negligible, but not the minority current (in this case electrons) across the forward biased emitter-base junction.



69

Bipolar Junction Transistor (BJT)

emitter injection efficiency

$$\gamma = \frac{i_{Ep}}{i_{Ep} + i_{En}}$$

base transport factor

B = fraction of holes that make it across the base without recombining

$$B = \frac{i_C}{i_{Ep}}$$

current transfer ratio

$$\frac{i_C}{i_E} = \frac{Bi_{Ep}}{i_{Ep} + i_{En}} = B\gamma = \alpha$$

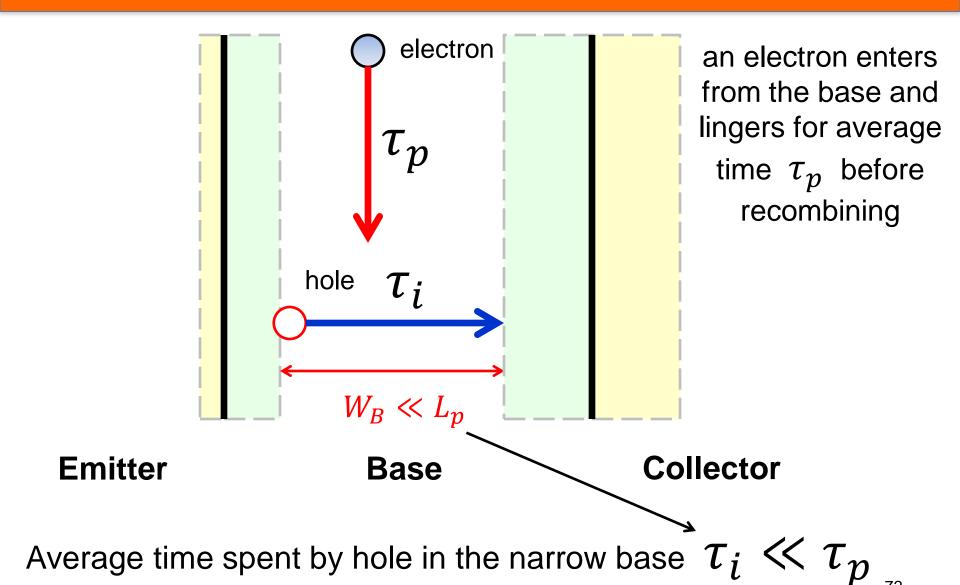
Base-to-Collector Amplification Factor β

$$\frac{i_C}{i_B} = \frac{B\gamma}{1 - B\gamma} = \frac{\alpha}{1 - \alpha} = \beta$$

Since lpha is close unity, eta can be quite large

$$\alpha = 0.9 \rightarrow \beta = 9$$
 $\alpha = 0.95 \rightarrow \beta = 19$
 $\alpha = 0.99 \rightarrow \beta = 99$
 $\alpha = 0.999 \rightarrow \beta = 999$

Hole transit time in the base



Charge storage model in the base

At steady-state there are excess electrons and holes in the base and for charge neutrality

$$Q_n = Q_p$$

Assuming $\tau_n = \tau_p$ and $\gamma = 1$ and negligible saturation current

$$i_C = \frac{Q_p}{\tau_i}$$

$$i_B = \frac{Q_n}{\tau_n} = \frac{Q_n}{\tau_p}$$

$$Q_p = i_C \tau_i$$

$$Q_n = i_B \tau_p$$

$$Q_p = i_C \tau_i \quad Q_n = i_B \tau_p \quad i_C \tau_i = i_B \tau_n$$

Amplification factor again

For each electron entering from the base contact, a number τ_p/τ_i of holes goes from emitter to collector maintaining charge neutrality

$$\frac{i_C}{i_B} = \frac{\tau_p}{\tau_i} = \beta$$