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10 INTRODUCTION
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Figure 1.7 A double-heterajunction semiconductor laser structure, where the central GaAs region
provides both the carier confinement and optical confinement because of the conduction and valence
band profiles and the refractive index profile, This double confinement enhances stimulated emissions
and the optical modal gain,

The control of the mole fractions of different atoms also makes the band-gap
engineering extremely exciling. For oplical communication systems, it has been
found that minimum attenuation [19] in the silica optical fibers occurs at 1.30 pwm
and 155 wm (Fig. 1.8a). The dispersion of light at 1.30 pm is actually zero
(Fig. 1.8b). It is therefore natural to design sources such as light-emitting diodes
and laser diodes, semiconductor modulators, and photodetectors operating at these
desired wavelengths. In addition, many wavelengths, or the so-called optical channels
for dense wavelength-division multiplexing (DWDM) applications, near 1550 nm
with constant frequency spacing such as 50, 100, or 200 Gllz can be used to take
advantage of the broad 24 THz [requency bandwidth near the minimum attenuation.
For example, by controlling the mole [raction ol gallium and indium in an
In, - Ga,As material, o wide tunable range of band gap is possible because InAs
has a 0.354 eV band gap and GaAs has a 1.424 eV band gap al room temperature.
The lattice constant of the ternary alloy has a linear dependence on the mole fraction

&
a(AB,_.C) = xam}!) (1 — x)a(BC) (1.3.1)

C, where a(A#) is the lattice constant of the binary compound A}famd a(BC)1s that of the

compound BC. This lincar interpolation formula works very well for the lattice con-
stant, but not for the band gap. For the band-gap dependence, a quadratic dependence

—C
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Figure L8 Shoplificd illusmaions of (a) acenuation spectrum and (b) the dispersion parameter ol light
propagating in silica optical fiber,

on the mole fraction x is usually required (see Appendices C and 1D on pages 801809
for some important material systems)

Ey(AB)-<C) = x !:‘I.;(Aﬁ) + (1 = x) Bg(BC) — ba(l — x) (1.3.2)

where b is called the bowing parameler because it causes a deviation of the ternary
hand-gap energy away [rom a linear interpolation of the two band-gap energies of
the binary compounds. Figure 1.9 plots the band-gap energy at 7= 0K as a function
ol the lattice constant lor many binary and ternary compound semiconductors [20].
For example, GaAs has a band gap of 1.519 ¢V at low temperature and a lattice con-
stant of 5.6533 A, whereas InAs has a band gap of 0.417 eV and a lattice constant of
6.0584 A, as indicated. A ternary In,_,Ga,As compound has the two end points at
GaAs (x=0) and InAs (x=1) and its band gap has a slight downward bowing
below a linear inerpolation. At x = 0.468, the Ing53.Gag 46sAs alloy has a lattice
constant matched to that of the InP (5.8688 f&).

For Al ,Ga,— As ternary compounds with 0 < x < 0.4, the following formula is
Cﬂl't’]l'ﬂ(‘lt'l]y nsed at room tempe.mmre:

I, (AlGay_As) = 1.424 4 1.247x (eV). (1.3.3)

Most ternary compounds require a quadratic termn because the bowing parameter is
not zero. From the ubove formula, we can calculale the conduction and valence
band edge discontinuities between a GaAs and an Al Ga,_,As heterojunction using



2.3 GENERATION AND RECOMBINATION IN SEMICONDUCTORS 45

1. Electron Capture: An electron in the conduction band recombines with a
hole in the valence band and releases its energy to a nearby electron. This
process destroys an electron—hole pair. ‘The recombination rate is

Ry = Cynp. (2.3.13)

An important Auger process, called CHCC process, is shown in Fig. 2.7a in the
momentum space. An electron (1) in the conduction (C) band interacts with
another electron (2) in the conduction (C) band via Coulomb interaction, resul(-
ing in the recombination of electron (2) with a heavy (H) hole in the valence
band (2'). The emitted band-gap energy due to this electron—hole recombina-
tion is picked up by electron (1) being excited to a higher energy state (1'). In
this process, the hole density in the heavy-hole band and the electron density in
the conductor band should be used in (2.3.13).

2. Electron Emission: An incident (energetic) electron in the conduction band
creates impact ionization by breaking a bond, thus causing an electron in
the valence band jump to the conduction band. This process creates an
electron—hole pair. The generation rate is

Gp = eyn. (2.3.14)

3. Hole Capture: An electron in the conduction band recombines with a hole in
the valence band with the released energy taken up by a nearby hole. This
process destroys an electron—hole pair. The recombination rate is

Ky = L}Jup'“’. (2.3.15)

Two important Auger processes related to hole captures, called CHSH and
CHLH processes, are shown in Fig. 2.7b and Fig. 2.7c, respectively. In the
CHSH process, a conduction (C) band electron recombines with a heavy
hole (H), and the emitted band-gap energy is picked up by a nearby heavy

7

= Conduction band L = Light-hole band
=== H = Heavy-hole ba S = Spin-orbit split-off band JL\
Figure 2.7 Band-to-band Auger recombination processes. (a) CHCC, (b) CllSl—l (c) CHLH, and
(d) CHHH processes. ﬁ
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where the carrier lifetime is

7n) = (A + Bn+ Cn>)~ " (2.3.21)

Often, we define the radiative andj'adiative lifetimes:

| 1
T = — T = " (23.22
" Bn YA+ Ca? )
The intrinsic quantum efficiency is the ratio of the radiative recombination rate to the
total recombination rate

- I / Ty Thr
Thn — = ’
I[’Tl < |/T,“- T+ T

(2.3.23)

which is an important parameter for LEDs. Under a forward bias of a LED, the
current injection determines the carrier density; therefore, the radiative recombination
due to the spontancous emission of photons (Bn?) and the nonradiative recombina-
tions (An + Cn™).

2.3.4  Recombination by the Stimulated Emission Process

In semiconductor lasers and LEDs, stimulated emission of photons by incident
photons causes recombination of electron—hole pairs, as shown in Fig. 1.4b. This
recombination rate is given by the photon density S multiplied by the rate of
growth, or group velocity (v,) times gain coetficient g(n)

R = vge(n)s. (2.3.24)

The stimulated rate plays an important process in semiconductor lasers and will be
used again in Chapter 10 for the analysis of semiconductor lasers to predict the
light output power versus the injection current. It is also uselul to predict the band-
width of a directly modulated semiconductor laser when the injection current is
modulated by an ac signal above threshold.

2.3.5 [Impact lonization Generation—Recombination Process [6]

This process is very much the same as the reverse Auger processes discussed above.,
However, the hot electron impact ionization processes usually depend on the incident
current densities instead of the carrier concentrations. Microscopically, the processes
are identical o the Auger-generation processes 2 and 4, which create an electron—
hole pair due to an incident energetic electron or hole. These rates are usually
given by

. J, ;
(.;n = oy — GJ:; = ‘BPM {2325)
q q

non
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It is wsually assumed that the quasi-Fermi levels stay as constants across the
depletion region, that is, fy(x) = Fy for —X, Sx <400, and F,(x)=F, for
—00< x < xp, as shown in Fig. 2.14. This is equivalent to the statement that the
carrier distribution in energy for the same species of carrier across the depletion
region stays the same in the depletion region. As a result of this assumption, we
find that, for the Boltzmann distribution, on the p-side

D) = Nyt &-FoelfaT (2.5.27)

A = Ny R RO T, (2.5.27b)
On the N-side

Py(x) = NyyeE@=Fo)/tal (2.5.28a)

Ny (x) = Neye! Wbl (2.5.28b)

Because at thermal equilibrium (i.e., no current injection, V = 0), F,,(x) = F(x)

nppy = NW,NW,H"(""'“_;f"}fk"?. =n (2.5.29)

i

where 1y, is the intrinsic carrier concentration on the p-side. Thus, il 'V % 0, for

X R
=Xy <x<1),

2 e JT Y b T 4 b
NPy = HEHE_*”N Fp)llaT — u;;}er‘fwk"':. (2.5.30)
At the edge of the depletion region, x = —x,, p,(—x,) ~ p,o = N,. Therefore,
n2
ny(—xp) = L eVl — eV /kBT, (2.5.31)

Here the subscript “0” in p,q and n,q refers to their thermal equilibrium values. The
minority carrier near the edge of the depletion region, n,(—x,), differs by a factor
exp(qV/kyT) from its thermal equilibrium value fyo due 1o the carrier injection.
Similarly, at the edge of the depletion region on the N-side, x = x, the minority
carrier concentration is

= T
= Plx) = PNO(,‘:’V,”‘BT (25?2)
o o) A%

where Pyo = nfy/Np, where ny is the intrinsic carrier concentration on the N-side.
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o

For the forward bias case, V > 0, when exp(gV/kgT)>> 1, the above results
in (2.5.47) and (2.5.48) can be further simplified and the quasi-Fermi levels are
plotted in Fig. 2.14a. Similarly, for the reverse bias, exp(qV/kyT) < 1, the quasi-
Fermi levels are plotted in Fig. 2.14b,

2.5.4 Current Densities and I-V Characteristics

The current densities arc obtained for the minority carriers first. On the p-side,

& : 7} _ : )

6_ an(x), and on the N-side, Jp ~ —gDp -(,-; 6P(x). Assuming that there is
X x

no generation or recombination current in the space charge region, that is, J, and

Jp are constant over the space charge region, the total current density is thus the

Jy = gDy
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Figure 2.15 (a) The carrier concentrations and (b) the current densities as functions ol position x in a
forward biased p-N heterojunction diode using the depletion approximation.

Smaﬂﬂé[ .
Big T



66 BASIC SEMICONDUCTOR ELECTRONICS

(a) &
Carrier concentrations
1

]
i
|

Tt___"""?Ff _____
7
Y\\.
/ ! Pdx)
=
—JCP Kp
& Current
(b) densities
pside Ay Al N-gide G

= _—
J«ﬁ,ﬁN_
Jon

Figure 2,10 (a) The carrier concentrations and (b) the current densities as funclions of x for a reverse
binsed p-NV heterojunction diode using the depletion approximation.
sum of the two current densities

J = "H(_xp) 2 JP[xN)
D, D -
=g (_ o + —PPNU) (VT ), (2.5.50)
Lar LP
The total current 15 /= jA with A the cross-sectional area of the diode.
I = Iy(e? " 1y (2.5.51a)

D, D
Ip = q(aﬂpr—:Pw)A, (2.5.51b)
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and the probability current density as
fi
jie ) = IV TR (3.1.6)
2mi

Here W*(r,0)W(r,1)d’r is the probability of finding the particle in a volume
d®r near the position r at time 7 The wave function is normalized such that
¥ (r, HOW(r, Nd°r = 1, that is, the probability of finding the particle in the whole
space is unity. By substitution, it is straightforward to show that

oo @
v Jﬁ—ap—(l (3.1.7)

which is the continuity equation or the conservation of probability density. It is
analogous to the charge continuity equation in electromagnetics.

The expectation value of any physical quantity defined by an operator O is
given by

(0) = ' U r, HOW(r, D = (V|0 ) (3.1.8)
'v

where the volume of integration is over the whole space. The ket and bra vector,
[W) and (W], are used as short-hand notation. In the above real-space
representation, that is, W = t(r, ¢), the correspondence for the operators is

i h
Position; ry, = r Momentum: Py = —-V. (3.1.9)
14

If V(r, 1) is independent of ¢, the solution W (r, ) can always be obtained using the
separation of variables

W(r, 1) = W(r)e (3.1.10)
and
i hz
— V2 V()| W) = EV(r) (3.1.11)
2m

which is the so-called time-independent Schrédinger equation. The solution may be
in terms of quantized energy levels £, with corresponding wave functions if,(r) or a
continuous spectrum £ with corresponding wave functions (r). In general, any
solution of the Schrédinger equation may be constructed [rom the superposition of
these stationary solutions

W(r, 1) = Za,,lﬁ”(l')e_m”"ﬂ' + | agipp(x)e " dE (3.1.12)
# ‘B
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where |a,|* gives the probability that the particle will be in the nth stationary (bound)
state 5, (r, r) with an energy E,,, and ap satisfies the normalization condition for the
continuum states. Tn studying a time-dependent potential problem, very often a per
turbation approach is used if the time-dependent perturbing potential is small com-
pared with the unperturbed Hamiltonian, and the above expansion in terms of the
stationary states s, (r) or i=(r), which are solutions to the unperturbed problem, is
very useful. In this case, a, (and az) will be functions of time as the perturbation
is time-dependent, and |a,,(lr)|2 will give the time-dependent probability that the par-
ticle is in state n of the unperturbed problem.

I we write the Fourier transforms of (r) and V(r) in the single-particle
Schrddinger equation (3.1.11),

k) = [:j;(r)e der g p (3.1.13)
Vik) = ’ Virye 'y (3.1.14)

we then obtain the momentum-space representation of the Schridinger equation

LS B (k) I i Vik — K = Ed(k) (3.1.15)
- — I3 =B Al ad
2m g : (2‘?]’;;}" ¢ {

which becomes an integral equation. This integral equation will be discussed in

Chapter 14.

3.2 THE SQUARE WELL

We consider a square (or rectangular) quantum well with a barrier height V. In the
one-dimensional case, the time-independent Schrodinger equation is

1.2 N
[ IS V(z)} (z) = Ed(z) G.2.1)

2m d7?

3.2.1 Infinite Barrier Model

First we assume V;, is infinitely high; thus, the wave function vanishes at the bound-
artes, Fig. 3.1a. The solution to the infinite barrier model satisfying the boundary
conditions ¢,(0) =0 and ¢,(L) =0 is

2 m "
b, (2) = \/-;sin(%z), PRI - (32.2)

&

—— SLpRry w;d:;t
3
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where we have used the polar coordinates,

dkdky = kidddly, & =kl + k2, dE = h’kdk,/m*

&

We can then write the 2D density of states as

m"
E)=——— H(E — E, 3.2.10
PED( ) ﬂhrsz g ( r_) ( )

where H(x) is a Heaviside step function H{x) = I for x = 0 and H{x) = 0 for x < 0.
The electron density n is then given by

n= II{]‘IEPE[)(E)JF(E)' @:231)

The density of states pp(£) is plotted in Fig. 3.2 as the steplike function with each
step occurs wherever there is a new subband energy level E|, E, = 4£,, £y = 9F,,
and so forth. It is interesting to compare the two-dimensional density of states with
the three-dimensional density of states (2.2.36)

. 1 2m\Y?
PanlB) = 5— | —7 VE. (3.2.12)

2
T\

At E=E, [rom (3.2.3)

(Zm,)ﬁxz (fil,,_iwl)yl <« S‘U—Pﬂmtl’f'ﬁ %

s () = P o
Pan(E) 27\ B 2me L2
m"
=n B (3.2.13)
ah L,
A piE)
Panlf) e
w/—
-
-
e
e
7
e — Pap(E)
Ir’
f f >E
0 £ E=4E Ey=9E,

Figure 3.2 The clectron density of states pap(E) (solid line) for a two-dimensional quantum-well
structure is compared with the three-dimensional density of states pyp(E) (dashed curve),
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In this section, we summarize the major results of the energies and wave functions for
the hydrogen atom model with both bound (£ < 0) and continuum (£ > 0) state sol-
utions [4-8]. The hydrogen atom is a two-particle system for the positive nucleus
(with a mass n;) at a position ry and an electron (with mass m5) at a position 1.
The two-particle system is described by a wave function 1 (ry, 15, 1), which is a sol-
ution from the Hamiltonian

2 2

H=2L4 Py 5 (3.4.1)

2?’.-‘11 2.’:‘12

where py = (h/i)V| and p, = (h/i)V,, and V; refers to the gradient operator with

respect o (i = 1, 2). A general solution is (o transform from r; and r; coordinates
to the center-of-mass coordinate R,

mry 4 mars

R = (3.4.2a)
nty -+ nip
and the difference coordinate r,
r=r;—rn. (3.4.2b)
The complete solution is of the form
(,J'k-l' _
P(ry, ry) = —\7_7()’1(_!‘) (3.4.3)
where f (r) satisfies
i v -2 |y E(r) (3.4.4)
— ;= = Ll A
2m. " dwer
where m, is the reduced effective mass, 1/m, = 1/m; + 1/m,.
3.4.1 3D Solutions
In three-dimensional space, the eigenfunctions can be expressed as
)lf(rJ ~ Ry (r) Yy, (8, ch): bou.mfd—states (E < () (3.4.5)
Ry (r) Yy (0, ¢):  continuum-states (£ < ()

where the radial functions R, (r) and R.(r) can be found in Rels. 4—8 and 10. The
first few spherical harmonics Y;,,(6, ¢) are given as follows:

=10 (s orbit)

Yoo = = (3.4.6)

a0 — \/4—7]_



3.5 TIME-INDEPENDENT PERTURBATION THEORY 97

3.4.2 2D Solutions
The solutions for the two-dimensional hydrogen atom problem are given by

,!‘M‘ ff;

Rum(r)—=, bound-states (£ < 0)

;&‘ i(r) = ‘(/2_11' (3.4.13)
(Eﬁﬂ?c)

Ren(r)——, conlinuum-states (£ = 0),
;Smﬁﬁfq The eigenenergies for the bound states are quantized

V2m

. R},
‘En:_% 1 3 (n — 1,2, 3,...). (34]4]
M=
(=-3)
We have
g A .l 4 il = CI. Al [~
Ly — —L”\y, Ly — _6!"‘“ Ly = _E{‘P s (3.4.15)

It is noted that the binding energy for the ls states |£,] is four limes that in the three-
dimensional case. This enhancement of the binding energy will be very useful in
understanding the excitonic effects in semiconductor quantum wells and the obser-
vation of the excitonic optical absorption spectra, which will be investigated in
Chapter 14, The wavefunction at the origin is

I

3
3 I
g\ no— 5

For continuum states, the energy £ is a continuous variable, and the wave function at
the origin is

|th,0(r = 0))= (n=1,2,3..) (3.4.16)

, I {)rl.-"{kuu}

o — 0)"— = 3.4.17
[ )| Ryai‘ﬂﬂ' ( = ) ( )
cosh| —

£y

where E = i k*/2m,. The expression inside the square brackel is the Sommerteld
enhancement [actor,

3.5 TIME-INDEPENDENT PERTURBATION THEORY

3.5.1 Perturbation Method

In most practical physical systems, the Schrédinger equations do not have exact or
analytical solutions. It is always convenient to find the solutions using the
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(b) If we keep only the first two nonvanishing terms in the above summation for
C,, we obtain

32 4 x 22 4 x 42
‘_—(JX _A2yS 2 anS
T (1 —-2%° (1 42y
32 % 22 [4><l2 4 x 32

G = X +
@-17 @-9
32 % 32 4 % 22 4 x 42
Cy= — X 7+ z
9—-4)Y (9-16)

} =-2.194 x 107*

— } =6.578 x 107

= } =3.931 % 107,
T

We see that £, decreases with incrcasing ficld /as €| < 0 and both £ and 174
increase slightly with increasing field F.
(c) The above C,, in part (a) can be summed up to an analytical expression

[12-14]
22— 15
-§ur€r’5wrrt Cn = H‘P,Z:‘:T or Cp=-2194%x107, C;=6.544 x 107, and
4 Cy =3.899 x 107

4

which are close to those in (b). These results using the second-order pertur-
bation theory agree very well with those obtained from variational methods
[14-17].
3.5.2 Matrix Formulation
Alternatively, the eigenvalue problem
Hip= (HO + H') = E (3.5.30)

can be solved directly by letting

b= aud (3.5.31)
m

where { ¢V} are the eigenfunctions of the unperturbed Hamiltonian,

anﬁ,({}) = E[U)d’({n- (3.5.32)

" " m

The second subscript n in @ is dropped for convenience. Here d)fg},m =1,2, vrasd¥s
may also be degenerate wave functions. A direct substitution of (3.5.31) into (3.5.30),
and taking the inner product with respect to im,k =1,.... N, gives

Z (Hin — E8)am =0 (3.5.33)
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The Kane’s parameter P can also be related to the effective mass of the electron
m; using

2
2o o2
22 kP (Eg+3A) P

Ei.‘, k — h, R . : — i
®) - E, 2my + Fo(Fy + A) 2m (4.2.25)
He (] - &> A2 (4.2.26)

ny

2AN
2m; (Eg + ?)

Sometimes, the hzk'l/z:nﬂ term is ignored, as m; =~ 0.067mq << my for GaAs; there-
fore, the term m; /my in (4.2.26) is ignored.

We note that these wave functions in (4.2.21)—(4.2.24) are eigenvectors of the
Hamiltonian

R h i
H=Hy+—+—kp+——=0+VV x p 4.2.27)

2mo My 4::rﬁr.~3

with eigenenergies £ = £, 0,0, —A as k — 0 for the conduction, heavy-hole, light-
hole, and spin split-off bands, respectively,

4.2.5 General Coordinate Direction
If & is nol along the z-direction,
k = ksin fcos @x -+ ksin 0sin @y + kcos 0 2 (4.2.28)

the fcllowing transformations can be used to find the basis functions in the general
coordinate system

: ) . fl
/ e~ih/2 c[)sf "2 gin—
Tl 2 2 T 26
= A o |1, (4.2.29)
a2 s b2 =
e "< 5in 7 e'“'° cos >
. - _ Sih .
X cos f) cos ¢ cos ) goshp  —sin b X
Y| = —sin ¢ cos ¢ 0 ¥ (4.2.30)
Zz! | sinfl cos¢p  sin 6 gosp  cos B Z
sin

The spherically symmetrical function maintains its symmetry, S(+') = S(#) as #' = r
because the length scale is preserved in a unitary transformation. The above
transformation will be useful in Chapter 9 when we discuss optical matrix elements
for quantum wells.

< SN

< Sn
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Dot-multiplying (5.2.1) by H and (5.2.2) by E, and taking the difference, we obtain

: oD
VeBxH=-H-28-£.-2_5.3 (5.2.3)
ot ot

where V- (Ex H)=H* V x E=E - ¥V x H has been used. Define the Poynting
vector as

S=ExH (5.2.4)

which gives the energy flux density (W/m?). For an isotropic medium, I) = gE and
B = uH, the electric and magnetic energy densities are

We = %E - K
N (8.2.5)
Wi = 3 H - H.
Therefore, Poynting’s theorem in the time domain is simply
0 : :
V'S=- TI(WE' +wy) —E - J. (5.2.6)
[

The theorem simply states the power (low, or the divergence of the power density S,
is given by the decreasing rate of the total electric and magnetic energy density plus
the power generated by the current source, —E - J. I integrating over a volume
Veenclosed by a surface S, we obtain Poynting's theorem in the form

|

that is, the power flow out of the surface S equals the decreasing rate of the
stored electric and magnetic energies plus the power supplied by the source,
~[[[ E-Jav.

A complex Poynting’s theorem can also be derived from Maxwell’s equations in
frequency domain

.E x H=dS = — -i;: I l [[W,_- + W) dV — l ! l E-JdV (5.2.7)
o)), i id
v

v

[ - i . (1 . ) Lo e
Bl (K —_ K- zispoan - ——‘lt‘. . 3
2V (E x H) Iw(QF D 2]3 H 3 J (5.2.8)

If J = Jy -+ Jy where Jy accounts for dissipation (e.g., J; = oE in a conductor), we
then have

X i Y+ i 2E D" —B-H i*—__] P 52
5V € XH)+iz(E: D' ~B-H)+ E-J; =—E-J. (5.2.9)
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where A is the wavelength in free space. For a plane wave propagating in the
+z-direction with a polarization along £, the electric field behaves as follows:

i . 2 ]
E =4 B ¢ = & Byenp (s—;-rnz - ;Z) (5.5.7a)
By . itE 2 '
H=3 =2 =3 ucxp(t—wnz —Ez), (5.5.7b)
m Ty A 2

where 1y = /1y/e0 = 12077 is the characteristic impedance of the free space. The
time-averaged Poynting vector for the optical power density is

|
S = > RelE x H'] = 2 zi 2 g~ (5.5.8)

T

Ly

which decays exponentially as the wave propagates farther along the z-direction with
a decay constant determined by the absorption coelficient.

5.5.2 Lorentz Dipole Model

In a resonant dielectric medium such as a collection of resonant atoms in the presence

of a driving electromagnetic field £(z), we can model each resonant atom as a classic

harmonic oscillator, Fig. 5.2. The equation §§ motion is defermined by the reduced 076
mass for a free electron with mass myg bound to a nucleus with mass M [6-8|

M= R 0 (5.5.9)

()

B

wl Yol £

Figure 5.2 A classic dipole oscillator model for an electron bound to a positive nucleus, The resonant
frequency wy = +/k/ny is characterized by the restoring spring constant £ and the reduced mass m,.
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Usually, M > my, therefore, m, = my. The equation of motion for the displacement
of the electron with a unit charge —¢ from its equilibrium position is governed by

d*x dx
— + mgy— + kx = —gE(t 5.
My 3 -+ mg'yd‘r + kx GE(1) (5.5.10)

where vy is a damping factor and k is the spring constant. For a time harmonic optical
electromagnetic field, E(t) = Ege™ ", the dipole moment of the electron —g and the
positive nucleus +-¢ is given by

G2 E(t)
p=—qx(t) = £ - (5.5.11)
mo(—” F iy + wp)
where a resonant frequency wy — \/k/myq has been defined. The polarization density
P due to N atoms or electron—nucleus pairs per unit volume (J/C|n3} is
NG*E(1)
P=Np= L L I (5.5.12)
mp(—w” — iy + wg)
The displacement vector D is given by
D=gyli+P,+ P
Ng* .

=go|l+x + I (5.5.13)

o o
mpeglwy — @ — iyw)

where we have included the background contribution to the polarization density
P = gpxpls. We obtain the permittivity function for the resonant dielectric
medium or an atomic gas:

e(w) = gyl + y, + X)) (5.5.14a)
Ng* @

= = 5.5.14b

xw) mnsu(mﬁ — @ — iyw) (cu% — w? — iyw) ( )

where

Ng?
HyE(

wp, =

is the plasma frequency. Separating the real and imaginary parts, y= y’ + .r.‘,y”)

30 2 2
wp(wu — w")

" (0} — PP+ (o)

x'(w) (5.5.16a)

2
w, YW

(0 — @) + (yo)*

x"(w) = (5.5.16b)

Q‘HT nl.l3>



192 ELECTROMAGNETICS AND LIGHT PROPAGATION

The relative permittivity or dielectric function is given by

or(w) = e siw) + ie)(w)
£p
=14 x +x'(@+ix"(w) (5.5.17a)
el(w) — 1 + x, + x'(w) (5.5.17b)
g(w) = x"(w). (5.5.17¢)

We denote the static (dc) value of the permittivity at zero frequency,
<
X =x(0)=— (5.5.18a)
Wy

gs = g.0) = 1 + XX (5.5.18b)
The other limit as @ approaches infinity is y(c0) = 0, that is, the medium polarization
simply cannot respond to the fast varying driving electiomaguetic field, and the
dielectric constant in the high-frequency limit is given by the background value:

£x = g(00) = | + y. (5.5.19)

Figure 5.3 plots the real and imaginary parts of the susceptibility y. The imaginary
part peaks at the resonant frequency wy as expected, with a full-width at half
maximum of . The plasma resonance is also given as

(] (k)

Q=
(Awpwum Y

"
Xhuuk(wUJ = XH'Q‘ (5.5.20)
The real part has a zero crossing at the resonant frequency and is positive for frequency
below resonance and is negative for frequency above resonance. The complex
propagation constant is
k = a/pge = wv/ polen + egx(w)]
£ ! [T
R wypgErs | +— Iy +ix"]
28[-,

= kot + Ko - fg (5.5.21)

where ny = \/m is the background disleckie-sonsant

[lere the approximation is valid only il the sccond tenn is muoch smaller than the
first background permittivity. Otherwise, (5.5.4a) and (5.5.4b) have to be used. We
have then,

1 v
An = i "= the change in refractive index (5.5.22a)
p

refmcive TdeX.,
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— (mipme)
The transmitted fields are ( ( I
E, = ;-rEue”‘M;’:ﬁm — (5.6.52)
= —
H; = — (fkosk + kau2)tEgetertih (5.6.5b)
Wiy
where
B, + 1k, = 0’ uyer = kind (5.6.6)

and ny = \/pyea/ oo, Matching the boundary conditions in which the tangential
electric field (£,) is continuous at x = 0,

Epe™'® + 1 Ege"i® = tEye* (5.6.7)

for all z, we obtain
kiy =ikl =, (5.6.8)
| +r=1t. (5.6.9)

Equation (5.6.8) is Snell’s law or the phase-matching condition, Fig. 5.5b,

kysin 6 = ky sin 0, = ki sin 6, (5.6.10)
or
ny sin 6, = ng sin 6, (5.6.11)

where k; = w, /i = kong, i =1, 2. The other boundary condition in which the
tangential magnetic field (H.) is continuous leads to

k
frmepedddl R (5.6.12)
M kl.\'
Solving (5.6.9) and (5.6.12) for r and 1, we obtain the reflection coefficient
o (.ru-'l kl\')
_ I Ky _m cos B — n, cos B, (5.6.13)
Ly (_;._::] kz,) 1, cos O -+ ny cos 6
Ha kl.r
and the transmission coefficient
2 s O
i i bl (5.6.14)

14 (,u.L kgx) - Ry cos 6 + 1 cos G
Mo kl,r

WWT

vl

/
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Special Case for Normal Incidence At normal incidence, 6, = 0", ky, =k, =
kony and ki, = k| = kony. We find the reflection and transmission coefficients for
the field are, respectively,

Sy =y 2m

fg=mr—
-+ na ny + 1o

ria (5.6.21)

Atan optical energy below the band gap of most semiconductors, the absorption is
usually small or negligible. Above the band gap, the optical absorption is important.
When a plane wave is normally incident from the air to a semiconductor surface, the
reflectivity of the power is

2

ny — 1 (n— 17 4 k*

R = = 5 -
(n+ 1)+ x*

(5.6.22)

ny +n

which takes into account the absorption effect when the refractive index 77 is complex
and ny of the air is 1,

Numerical Example For InP material, the dispersive effects of the real and the
imaginary parts n(w) and x(w) are given in Appendix B at the end of the text as a
function of the photon energy hw or the free-space wavelength A, At an energy
hiw = 2.0V (A = 0.62 pum), which is close to that of a HeNe laser wavelength, we
have n = 3.549, and k = 0.317. The absorption coefficient is

T dar
o =—K

=———x 0317 = 643 x 10*em™".
A 0.62 pm %031 249 X cm

The reflectivity for the reflected power from the semiconductor is

(3,549 — 1) + 03172

4
- ; =0.31¥.
(3‘5496&0‘3172 L_,_‘,g__ PSS

5.6.2 TM Polarization
The result of TM polarization can be obtained by the duality principle using the
exchange of the physical quantities in Section 5.6.1. The results are
H; = § H, = § Hye Ttz (5.6.23a)
H. =5 rayElpe et (5.6.23b)

H, = jiry Hye "2t (5.6.23¢)
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where ky. = k., and

| (& Koy
. erki,)  mp cos B — iy cos b

oy = = 5.6.2
fid (E.‘] kz,\-) fy cos 6 + iy cos 6, G0
i [ EL
g2 kix
2 21, cos 0,
v = = . 5.6.2
m (s; k-g,r) iy cos B + ny cos 6, 10240
[ (oL
%) fC]x

Brewster Angle For two dielectric media, the reflection coefficient for the TM
polarized light vanishes when &.k,, = &,k,,, which means

na cos B = ny cos . (5.6.25a)
Snell’s law requires that

ny sin = ny sin ¢ (5.6.25b)

The above two equations are satisfied if’ ¢, + 6, = 90°. This angle of incidence ¢ at
which the reflection vanishes is called the Brewster angle 0y
fy = lalf'(u.g/n|), (5.6.26)

Unlike the critical angle, 6, = sin—'(ru/ul), which requires 1, < n,, the Brewster
angle exists for wave transmission in either direction

R
|-from yedum | o2

¥ . . — T
For total internal reflection, ka, = iova, and ryy = e~ where

T £ ¥n
'™ -1f E169
¢y = lan —)
12 (82 i,

The magnetic field experiences a Goos—Hiinchen phase shift of an amount —2¢/>"
when the angle ol incidence is larger than the critical angle 6.

(5.6.27)

Example Consider InP (n = 3.16) and air interface. We plot the reflectivity ol
power for TE and TM polarizations for plane wave reflection (a) from air to InP
surface, and (b) from InP toward the air interface in Fig. 5.6a and Fig. 5.6b, respect-
ively. For case (a), there is no total internal reflection. The reflectivity of the TE polari-
zation is always larger than that of the TM polarization. The Brewster angle occurs at
72.4"_ For case (b), total internal rellection occurs at 18.4°, beyond which both TE and
TM polarized lights have a unity reflectivity. The Brewster angle occurs at 17.6°.

5.6.3 Concept of Impedance for Plane Wave Propagation

In free space, the ratio of the transverse electric and magnetic fields for a plane wave is
simply mg = /g /€0 = 120771 For a plane wave incident obliquely onto a surface

W.:}..ﬁ?rt
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Similar relations between the real part and imaginary part of the complex refractive
index, fi(w) = n(w) + ix(e) exist

T da' k(w)
—-1=P | —
() ] T —w

(5A.18)

—00

K(w) =

l i__(L*‘_ (5A.19)
ar

PROBLEMS

51
5.2

SJ
54

5.5

5.6

5.7

Check the duality principle using (5.1.12).

For a laser light with a power 1 mW propagating in a GaAs semiconductor
(n = 3.5) waveguide with a cross section 10 pm > | pm, find (a) the power
density il we assume the intensity is uniform with the waveguide cross
section, (b) the electric field strength and the magnetic field strength assuming
it is a uniform plane wave.

Derive (5.5.4a) and (5.5.4b).

Plot the real and imaginary parts of the relative permittivity using (5.5.32) for
gold and check with Fig. 5.4.

(a) A plane wave is reflected between the Iree space and a bulk GaAs semi-
conductor with a refractive index assumed to be n = 3.5. Calculate the
reflection and the transmission coeflicients of the field, » and 1. a
normal incidence.

(b) Repeat part (a) il the wave is incident from the GaAs region onto the
GaAs/air interface at normal incidence.

(¢) For oblique incidence in part (b), find the critical angle and the Brewster

e —

angle. _—

For a plane wave incident from an InP region (n = 3.16 un(l)\g: 1.55 ,Luu];g%—

with an angle of incidence 6 = 15", calculate (a) the reflection and
the transmission coefficients, r and r, of the optical field for both TE and TM
polarizations, and (b) the reflectivity R and the transmissivity 7 for both
polarizations.

Calculate the Goos—Hiinchen phase shifts for an angle of incidence ;, = 45°
between an InP /air interface for both TE and TM polarizations (n = 3.16 and
A= 1.55 pm).

(a) Calculate the reflection and transmission coefficients, r and r, for a plane
wave normally incident on a slab of GaAs sample with a thickness o =
10 pm and a refractive index n = 3.5 at a wavelength A = | pm.

(b) Find the power reflectivity and transmissivity in part (a).

yes SPAE

et ’E W“Vden

L]
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N

S ;

>

Figure 6.5 A plane wave E incident on a uniaxial medium with a thickness o, The electric field vector
makes an angle of 457 with the two principal { y and z) axes,

we obtain

B= [i’ =" 26;:_&'r—.§-l.,!‘f]_F:__\/‘Uiem.,d

T S 9
o B 7' 2 o |
:(_piiz}ﬁe‘*u" for (ke — ko)d = qzw ?ZW . (6.1.36)
B g e

which becomes circularly polarized at the output end x = d. Using

5
k=C=2, (6.1.37a)
Ae £
27 i ¥
ko :4—;:2;;[, (6.137b) subsoug?
¢
s o
and defining —— aR. n ”o'{,dl‘nqr/,
2 A
b=l mo W A= (6.1.37¢)
Ag [rte — 1|
where A is the wavelength in free space (w/c = 2a/)), we have
)‘d 3)Ld 5/)‘vd )
s Led 6.1.38
d 47 4 4 ( )

Thus the plate, which can transform an incident linearly polarized wave into a circularly
polarized wave, is called a quarter-wave plate. Note that the value A, is neither the
wavelength in the free space nor the wavelength in the uniaxial medium (it corresponds
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with 277 divided by the difference in the two wave numbers k. Aind k). In many crystals
< “——__ such as lithium niobate (LiNbO5) or KDP (KH,PO,), the ﬁ‘actiﬁmic—m'—ﬁﬁ@'fﬁ?
o m My Some crystals such as quartz (510,), e g The velocities of the

Sa)Swr‘P\‘S
— 0 aqm

TN

© Ordin

two characteristic polarizations ¢/n, and c:/n,{ are not equal. The axis along which
the polarization propagates faster is called the fast axis and the other axis is called
the slow axis.

Polaroid If we have a uniaxial medium given by

e 0 0

e=|0 & Q (6.1.39)
0 0 & +i—
[{1]

we see that for an incident wave propagating in the x direction, it the electric field

is polarized in the y direction, it will propagate through with a propagation constant

guLSU\:LPtI __,_55 =w, /e, which is real. However, if I is polarized in the z direction, it will
5 — propagate with a complex propagation constant

0l M ‘D rd]my

ke = @, “(sz = ;1) ~w [inZ for Z» e, (6.1.40)
(] (] [i7]

and the wave will be attenuated significantly in the medium. Thus, if the thickness of
the plate is large enough, an incident field with an arbitrary polarization will have its z
component attenuated when passing through the plate. The transmitted field will be
essentially polarized in the y direction only, which is linearly polarized.

Example An experimental setup for an absorber of laser light uses a polaroid, a
quarter-wave plate, and a mirror as shown in Fig. 6.6. For an incident light with

;i x = fast axis
Passing I
axis
E']
li:‘in E] T
— ——
—— —
g y o E B
Equ h ! y=slow
4 axis
Absorbing
axis
Polaroid Quarter-wave plate Mirror

Figure 6.6 An experimental setup with a polaroid, a guarter-wave plate (QWP), and a mirror for com-
plete absorption of the light incident from the left side.
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(b) “*

)
- LI

FFast decay £

€ k/
+ 7 -
I 2d
& f £

Figure 7.100 (a) An asymmetric waveguide with £, = &, 5 & and a thickness o, (b) A symmetric wave-
guide with a thickness 24, The cutoff condition for the TE,,, mode in (a) is equivalent to that of the TE ¢z 1)
maode in (h).

which is equivalent to the cutoff condition of the TEy,,, ;, mode in a symmetric
waveguide with a 2d thickness. This can be easily understood from a comparison
ol the two electric field profiles in Fig. 7.10a and Fig. 7.10b. Because the decaying
constant « in region & decays very fast in Fig. 7.10a, its ficld profile looks very
much like half of the field profile of Fig. 7.10b.

7.2.2 TM Polarization H = jH,

We can easily obtain the solutions for the TM polarization using the duality principle.
The has the same form as (7.2.6), except that the constant | is different from
that in (7.2.6) and can be derived from the normalization condition or duality prin-
ciple, noting that & # &, # e,. The guidance condition is obtained from (7.2.4) alter
replacing i by &;. We find

kivd = tan™! (Sla) + tan ! (81&2) + mar (7.2.11)
ek £y kyy

for the TM,,, mode.

7.3 RAY OPTICS APPROACH TO WAVEGUIDE PROBLEMS

An efficient method to find the eigenequation for the dielectric slab waveguide
problem is to use the ray optics picture. We know from Section 5.3 that when a
plane wave is incident on a planar dielectric boundary with an angle of incidence
f larger than the critical angle, the reflection coefficient r;, has a Goos—Hiinchen
phase shift —2¢,.
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Figure 7.17  Amplilicd spontaneous emission spectrum of a 320-pum semiconductor laser cavity at room
temperature below threshold, The injection current is 7 = 8 mA, (Above the laser threshold current, 1, =
13.5 mA, lasing starts,)

where the dispersion effect (dn./dA#0) is taken into account and n, is the
group index of the guided mode, which accounts for the dispersion of the effective
index n.(A).

In Fig. 7.17, we show the amplified spontaneous emission spectrum of a
InGaAsP/InGaAsP strained quantum-well laser at 300K. The cavity length £, is
370 pm. The threshold current is /y, = 13.5 mA at this temperature. Using n, ~
3.395 and [10, 16] dn./dA ~—0.264 (um)~' near A = 1.49 wm, we obtain the
wavelength spacing AA ~ 7.9 A, which agrees with the spacing shown in the figure.

7.7 SURFACE PLASMON WAVEGUIDES

In recent years, surface plasmon waveguides, or plasmonics, has become an intensive
subject of research. The main idea is to develop waveguide structures of small dimen-
sions of subwavelength scales at optical frequencies. From Section 5.5, we understand
that metals behave like plasma at optical frequencies. If the optical frequency w is less
than the plasma frequency w,, the permittivity

gp(w) = eu(l — ruﬁ/wj) (7:7.1)

becomes negative, and the wave is strongly attenuated in the metal. If @ > wy, the

permittivity &(w) becomes joaf. Al @ = @, e(w) = 0, and the propagation constant
) A

k = w\/pe(w) vanishes (i.e., the electromagnetic wave does not propagate any
mode). The medium response gives

0=D=¢gy(wE =gE+P
P = —gk, (7.7.2)
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where U(x) is the Chebyshev polynomial and x = (A + D)/2 (see page 215). The
output at the double-bus CROW structure is

b e (el
dusr ] ikl =t 1 [bugs
1 [—r11;1+.t:r¢2[ —m.lz—f—rmn}[a;]

(8.4.22)
.I‘Jl

K| —tmyy +nyy —tmyy + man

where d, = 0 because there is not input from the d, ., port. The reflection and
transmission coefficient is

by tmyy —my fAUN (X)) — Uy_2(0)] — CUy 1(x)

rpg =— = = 8.4.23
e ay  myp —tmp DUy_(x) — Uy_o(x) — tBUy_ 1 (x) ( )
Cirl i il
tog = = = - s 8.4.24
o aj myy —tmyy DUy (X)) — Un_a(x) — tBUy_((x) ( )
The zeros ol the reflection give the conditions for the reflection minima
A = C = tUy 2(0)/ Uy (x). (8.4.25)
The poles give the oscillation conditions
D — B = Uy_a(x)/Up—1(x). (8.4.26)
When N = 1, we have
A—-C=0 (8.4.27)

which has the solution 0 = 2mr. The condition is given by

oscillation

D=t or 0=2mw and = 1/va (8.4.28)

Periodic Ring Resonators For lossless structure @ = 1, the Bloch theorem for a
periodic structure allows for

Gnt | _ LiBA | @n 8.4.29
I:b”.'_'[ } : [b” } ( )

where A = L, is the Bragg period. We expect

o)) e
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Near 0 = 37, Tar, 1147, ... (4n + 3)m, sin(6/2) = —1

BA =2m7 + ial (8.4.42)
2
cosh al = ﬂ/—l (8.4.43)
K

A schematic plot of the dispersion relation between (= wngyl./c) versus A is
shown in Fig. 8.21. The solid curves are the BA or the real part of the propagation
constant, and the dashed curves are for the imaginary parts @A in the stop bands
when BA = 2ma + icA.

Figure 8.22a shows a double-ring double-bus configuration with the output as
shown. Figure 8.22b shows an optical filter design for an input with two wavelengths
and the drop of each wavelength at two separate horizontal straight waveguides.
Figure 8.22¢ shows a single-bus periodic ring design for engincering the dispersion
or group delay. Such a structure has been demonstrated on silicon-on-insulator (SOI)
submicrometer photonic wire waveguides shown in the scanning electron microscopy
(SEM) images in Fig. 8.23 [73]. The design uses coupled resonators to a curved
waveguide bus for slow light or optical delay line applications. Figure 8.24a and
Fig. 8.24b show the measured losses and the transmission spectra of 1 ring and 56
rings [73]. We can sce a broader bandwidth when 56 rings are used. Delay of
more than 10 bits at 20 Gb/s is reported using these structures.

8.5 DISTRIBUTED FEEDBACK (DFB) STRUCTURES

Consider a two-dimensional corrugated waveguide or a DFB structure [78-86] as . +he sum ojt
shown in Fig. 8.25. The permittivity function £(x, z) can be written asfan unperturbed

slab waveguide £(x) and a perturbed periodic part Ae(x, 2) A
e(x, 2) = ) + Aelx, 2). (8.5.1)
(a) (b) i
S = g OIS !
x L biz) a(z)
7 }}2 = & = =
£ &

Figure 8.25 (a) A cormugated waveguide with a permittivity function e(x, z) can be written as the sum of
(b) an unperturbed part &"(r), which describes a uniform slab waveguide, and (¢) a perturbed part Ae =
£z — &) or Ae = g — &; in the corrugation regions.
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Because An(z) is periodic, it can be decomposed into the Fourier series

M= 3 By P (8.5.21)
pe—oo
Therefore,
Ae, =2npAn, for |x| <d/2, and Ae, =0 for|x| >d/2
Kap == [ Ay ()| EO ) i
x <4
= ?(2”05”- | I)Mr
~ 'koAny, (8.5.22)

where ky = w,/pigEp, and By = kgny have been used, and I' is exactly the optical
confinement factor because we assume the index grating is dependent on z inside

the guide. Similarly,
K;,” i — IY\'(}}'.\H.-| (8523)

and we have kept p = +1 or —1 for the first-order grating,
For an index phase grating with a magnitude An and phase ¢,

2
An(z) = Ancos (J—;i’ + (,D)

2, _jiT,
=An; eV 4 An_ eV

An Ay ;
Angy = % e, An_y = 28 -te; (8.5.24)
The coupling coefficients are
An .
Ky =Dk =" (8.5.250)
(8.5.25¢)

o An .
Kpa = —1 k07 e =—K

In other words, the coupling coefficients can be put in very simple forms and they
satisfy the relation Kj,, = —K7, because the index grating is lossless.

= b
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Figure 10.8  Measured spontancous emission spectrum obtained by collecting photons through a window
(W) in the substrate Ly and the amplified spontancous emission spectrum obtained by collecting photons
from the facet (F) Ly of an LED, (Reprinted with permission [rom [42] @ 1993 American Institute of
Physics.)

where G,(fiw) = 1'g — @ is the net modal gain (including all the losses due to

absorptions and scatterings in the device). Note that at the transparency wavelength,

Guhw) = 0 and Ly(hw) = Ly(hw) when no amplification by the gain action exists.

With enough carrier injection such that G,, = 0, we see that the photon density in

the spectral region where g(hw) is positive will experience amplification whereas

that outside the positive gain region will experience absorption. Because the gain

spectrum is narrower than that of the spontaneous emission spectrum [46], the

facet light will be narrower than that of the window light. These results [42] are

shown in Fig. 10.8. As a matler of fact, a comparison ol these two specira has

been used to extract the gain spectrum of a laser diode structure. By measuring the

two spectra Lp(fiw) and Ly(he) at the same current injection level, we can obtain

the gain spectrum. Furthermore, if we take the logarithmic function of the ratio of

the two spectra, In [Lp(hw)/Ly(hw)], it will be close to that of the gain spectrum

because it is proportional to In[(e%* — 1)/G,] ~ (I'ey”™~ ey)L if the overall gain m
(G,L > 1) is large enough [43]. By fitting the gain spectrum with a theoretical syl ‘}i" "
gain model, we can extract the carrier density n at a given injection current 7 |43]. . Sm‘f’ )
The carrier density versus the injection current / is a monotonically increasing

function of /, as shown in Fig. 10.9a at 25°C and Fig. 10.9b at 55°C. For laser

diodes, the carrier density is pinned at the threshold value when the injection

current is increased beyond threshold.
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current density is called the transparent current density. Further increase of the current
increases gain until it reaches the threshold condition, at which the gain is equal
to the background absorption plus the mirror transmission loss (or laser output) of
the cavity.

Consider an optical field Eq,(A) due to the spontaneous emission of photons by
electron—hole radiative recombinations in a Fabry—Perot cavity. When the optical
field propagates toward the minor facets with optical field reflection coefficients r,
and r, on each facet, we can write down the multiple reflections of the optical
field as

Easu(A) = I—"sp(/\) |:1 +i 1"29:.2“‘ <F (-"] !'geiz'ﬂ'_)z"'— - }

Eg(M)

= TR 10.1.29
| — et ( )
The complex propagation constant has a real and imaginary part
G 2 G
ST . | :
k=Fk —i = e i (10.1.30a)
G, = I'g — a; = The net modal gain. (10.1.30h)
The measured ASE power spectrum is proportional to |!.'5',\,;;;(A)i2
5 Egp(V) Ey,(W)
IA) = |Easg(V)] = s ]!_ 5= L 1pt ”‘ . (10.1.31)
[1 = rireE)® (1 =AY + 4Asin” (K'L)
where the amplitude A is
A= VRR; %, R =|nl, Ry=|nl. (10.1.32)

The ASE spectrum has maxima at

B

KL=mm, Iy = (1 —A) (10.1.33a)

and minima at

1 |E.,. '(”L|1|i1‘1)|1
KL = IR PR O b oA 10.1.33b
(m | Z)ﬂr - L+ A7 ( )

. e

If we take the ratio between two nearby peak and valley of the ASE spectrum,

Lz _ (1 +AY

TR (10.1.34a)

Im?ru
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Because k./wp. is a constant for a given mode, we can simply use

= Jb-[’lctiveIE.‘f'(x" 1}’)|2(‘M’d)} — e B

T 7, =Ty (10.2.11)
f—oo J—oo |E)(l _‘,-’)[hdxdy ’

which is approximated by the product of the two optical confinement factors along the x
direction (with a slab geometry in the elfective index method) and along the y direction
when the ficld is approximately given by

E, ~ F(x) G(y). (10.2.12)

It is a good approximation for a strongly index-guided structure, and F(x, y) ~ F(x) if the
geometry along the y direction is uniform such that the first part of the wave function
I(x, v) in the effective index method described in Section 7.5 can be assumed to be inde-
pendent of y. Index-guided semiconductor lasers have been shown to exhibit excellent
performance including the fundamental mode operation, low threshold, high quantum
efficiency, and low temperature sensitivity [33].

10.3 QUANTUM-WELL LASERS

Quantum-well (QW) structures [12-16, 61], as shown in Fig. 10,19, have been used
as the active layer of semiconductor laser diodes with reduced threshold current den-
sities compared with those for conventional double-heterostructure (DH) semicon-
ductor diode lasers. Research on quantum-well physics and semiconductor lasers
has been of great interest recently. For a brief history, see Ref. 3. Various designs
such as single quantum well (SQW), multiple quantum well (MQW), and graded-
index separatc-conlinement heterostructures (GRINSCH) have been used for semi-
conductor lasers [21]. As we have seen in Chapter 9, quantum-well structures
show quantized subbands and step-like densitics of states. The density of states for
a quasi-tlwo-dimensional structure has been used (o reduce threshold current
density and improve temperature stability. Energy quantization provides another
degree of freedom to tune the lasing wavelength by varying the well width and the
barrier height. Scaling laws for quantum-well lasers and quantum-wire lasers show
significant reduction of threshold current in reduced dimensions [24].

[3

10.3.1 A Simplified Gain Model _____._._—-——4@‘

The simplest model we will consider is the gain spectrum based on (9.4.)8) for a
finite temperature, assuming a zero scaltering linewidth [62, 63]

hin

8hw) = a7 B =hw— Egp) — (B =hw— Efs)|H(hw—Ef%)  (10.3.1a)

1]
where
max=Cole-M[’ |15 | 7P = Cyle- M|’ p2° 8, (10.3.1b)

T

me? D m;

" (10.3.1c)
thLz

0= 2 p:'
neC eI W
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(a)  Single-Quantum-Well Separate-
Confinement Heterostructure

]

|

U

{b) Multiple-Quantum-Well Separate-
Confinement Heterostructure

= LI ETLEE

Eiy

(e} Graded-Index Scparate-Confinement
Heterostructure (GRINSCH)

_/_U_UL &

Ly

Figure 10.19  Band-gap profiles for (a) single-quantum-well, (b) multiple-quantum-well, and (¢) graded-
index separawe-confinement heterosuucture (GRINSCH) semiconductor lasers.

tion subband and the mth hole subband is usually very close to unity for i = m,
and it vanishes il n # m because of the even—odd parity consideration. The
) polarization-dependent momentum matrix element is listed in Tahle 9.1 for condue-
ﬁnSV‘k tion (o heavy-hole and light-hole band transitions. The occupation factors for the
electrons in the nth conduction subband and the electrons in the mth hole

subband are

aD
()Y /\ is the reduced joint density of states. The overlap integral between the nth conduc-

1
——Te 103.24
.ch (E' fuw ,r””) | +e[Eg,,,+t'm|‘_fm:]fhm—h'}’[ﬂ,}- :“]—.];"kL\T ( . 2
£ (B =hao— 21 ) — L . (103.2b)
o (B 7 o[BG B~ R ] T
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Figure 10.20  (a) Population inversion in a quantum-well structure, where Ey+Fe-Fo>hw>E, -

Eiy o+ Eg. (b} The product of the conduction band density of states p(F) and the Fermi—Dirac oceu pation
probability f.(E) lor the caleulation of the electron density n is platted versus the energy F in the vertical
scale. Similaely, po(E) flE) = p(E) |1 = flF)] is plotted versus £ Tor the energy (£ < 0) in the valence
band. Assume that the temperatre T is OK.

Gain occurs when f' > fi", that is, the population inversion is achieved, Fig. 10.20.
It also leads o Ey + F. — F, > hw, where F, and F, are the quasi-Fermi levels for
electrons and holes, measured from the conduction and valence band edges, res-
pectively. Only those electrons and holes satisfying the k-selection rule contribute
significantly to the gain process.

10.3.2  Determination of Electron and Hole quasi-Fermi Levels

The quasi-Fermi levels 7, and F, are determined by the carrier concentrations i and
p. which satisly the charge neutrality condition

n+Ny =p+N} (10.3.3)
n= ’ dEp (E)f(E), p= I dE py(E) T — fulE)]
J0 J oo

. n
plE) =

1
3
i

H(E — Ey)
i 1

“I n=

(10.3.4)

= mt
Pu(E) = —4— " H(Epy — E)
arh n=1

where H(x) is the Heaviside step function, H(x) = 1 if x > 0, and H(x) = 0 if x < 0,
InTig. 10.21a and Fig. 10.21b, we plot the products p.(E) fo(E) and pp(E) [1 — f(£)]

versus the energy £ for 7'= 0K and 300K, respectively. The arcas below these func-
tions give the carrier concentrations n and p.
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Figure 10.43 shows [133] an example of self-organized TnAs quantum dots
inserted in InGaAs quantum well grown on a GaAs substrate by molecular-beam
epitaxy. Room temperature photoluminescence spectrum shows that QD emission
wavelength is controllable from 1.1 to 1.3 wm by varying the composition of
In,Ga, —,As quantum-well matrix from x =0 (1.1 wm for GaAs matrix) to x = 0.3
(1.3 pm). Figure 10.44a [133] shows the plan-view bright-field TEM image along
[100] direction and Fig. 11.44b the cross-section image under dark-field (200) con-
dition for the InAs QD array in a 10-nm Ing 12Gag xeAs quantum well. InAs-rich clus-
ters in the region of smaller InAs content are seen in both observation views. The
surface density of the islands is estimated as (3—4)x 10" ¢m ™2, The dots have a
typical lateral size of about 20 nm and a height of 5—-6 nm. These sizes are larger
than those of the InAs islands formed in a GaAs matrix. Because both the QD and
QW materials are lattice mismatched to the GaAs substrate, there is a risk of
plastic strain relaxation. Nevertheless, no misfit dislocations are revealed by TEM
due to the choice of the QW width and the InAs eds! fraction in the QW [133].
The sample with the QD structure embedded in a vertical optical microcavily
shows a Photoluminescence (PL) emission of 1.33 um [133].

st 100 nm

H

Figure 10.44  (a) Plan-view of the bright-ficld TEM image along the [100] zone, and (b) the image of the
cross section under dark-field (200) condition for the structure containing InAs QD array in a [0-nm
Ing 12Gap ggAs QW. (Reprinted with permission from [133] © 1999 American Institute of Physics.)

~ qnofle.



462 FUNDAMENTALS OF SEMICONDUCTOR LASERS

10.5.2 Spontaneous Emission, Gain, and Lasing Spectrum

In Chapter 9, we discussed the absorption and gain of quantum-dot lasers [140-146].
The filling of states of quantum dots is complicated by the inhomogeneous size dis-
tribution and the density of dots or the distance between nearby dots [141]. When the
inhomogeneous broadening is reduced, clear observation of ground-state and excited-
state emission peaks or absorption peaks arc vbservable [141-146]. For example,
Fig. 10.45a [141] shows the net model” absorption of a quantum-dot sample (dots
in a well, or DWELL [139]) showing clear absorplion q
and excited state when there is no current injection. In the presence of increasing
current, population inversion occurs and a clear gain peak occurs at the ground
state or the excited state at a higher current of 200 mA. Analysis of the gain spectrum
seems to indicate two quasi-Fermi levels for the ground and excited state. The com-
petition of homogenous broadening and inhomogeneous broadening also leads to

)
o

7 Intrinsic loss

i
s

... Ground slate

- Excited slate

Net modal absorption (cm™)
I
3

90 i !
Calculated ! [ g
155 - Measured [ InGaAs - QW
0.9 10 1.1 1.2 1.3
Pholon energy (aV)
(b)
0
*.;" v—v 200 mA
.,:_. —20 +——+ 100 mA
@ o—ao 20 mA
(=1}
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£ —40
o
<
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0.9 1.2 1.3
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Figure 10.45  (a) The net modal absorption of the three-layer dots-in-well (DWELL) waveguide structure
for TE-polarized light. The vertical line indicates the transition energy ol the well. The horizontal dashed
lines indicate the waveguide loss and the peak absorptions due o the ground and excited states. The solid
line is the fitting of the calculated absorption spectrum to the experimental data. (b) The net modal TE gain
spectra for pulsed currents per segment from 20 to 200 mA. (Reprinted with permission from [ 141 ] @ 2004
IEEL.)

modal
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Figure 10.47  Output power and the homogeneous broadening of the ground-state tansition (solid
circles) versus the injection current at 295K, The solid cuwrve is the measurement, and the dashed curve
is the caleulation. The range of current for only the ground-staie lasing, both the ground-state and
excited-state Tasings, and only the excited-state lasing is shown, with the perpendicular dashed lines as
boundarics. (Reprinted with permission from [142] 5 2005 American Institute of Physics.)

only the excited state are marked. The homogenous linewidth, which is used to model
the lasing spectrum, is also shown as the right vertical axis.

10.5.3 High-Speed Modulation: p-Doping and Tunneling Injection

p-Type Daoping [147-162] A few major improvements in quantum-dot lasers
result from the p-type doping, tunneling injection, and submonolayer growth (for a
recent review, see [137]. p-type doping was suggested as early as 1988 [127] to
improve the gain property ol quantum-dot lasers. A simple way to understand the
advantage of p-type doing is that the heavy-hole subband energy levels are close
to each other due to their heavier effective mass than that of the electrons in the con-
duction band. Therefore, the holes spread out thermally into various subbands instead
ol filling the ground state completely first, whereas electrons tend to occupy the
ground state better because the excited state of the conduction subband (C2) is
further away from the ground state (C1). It implies that the number of interband tran-
sitions such ags C1-HHI is reduced because not all holes occupy the ground state
(HH1) for an undoped quantum dot sample. The holes that spread out to HH2
subband do not recombine effectively with those electrons of the C1 subband.
Although this is an oversimplified picture, theoretical models and experimental
data seem to confirm several advantages of p-type doping. Experimental results
have indeed shown that the p-doped 1.3-p.m QD lasers have substantially improved
performance for short cavity lengths, indicating an increase in the ground state gain
and exhibit excellent temperature W@ﬂ‘[hcr experimental data TnSGnSTﬁVT{-}.
[149] on spontaneous and laser emission of p-doped and undoped QD heterostruc-

tures indeed show that the ground-state spontaneous emission of the carbon-doped
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12.2 HIGH-SPEED MODULATION RESPONSE WITH NONLINEAR
GAIN SATURATION

12.2.1 Nonlinear Gain Saturation

The nonlinear gain model g(n, S) at high photon density § can be taken from [12, 13]

glng) -+ g'(n(t) — ny)
1+ &5(1)

g(n, §) = (12.2.1)

where go = g(ng) and g' = [0g/dn],—,, is the differential gain at ny. The factor 1 +
&S accounts for nonlinear gain saturation, which is important when the photon
density is large. The factor & is called the gain suppression coefficient.

dc Solution The steady-state solution at /= I is obtained from d/dt =0 in the
rale equations

Jony o vegoSo .
"-‘L gd T i | 4 &S0 ( )

L Ve&oSo So
- = — — BRy,(np). 12:2:3
[ + &S, T JB .1.(‘0) ( )

Il # 0, the general solution for Sy can be found analytically from (12.2.3) (see
Problem 12.5). Then ny is obtained [rom (12.2.2).

Small Signal ac Analysis Using the linearized expression by substituting
(12.1.10) into (12.2.1), we obtain

2ln) I L0
(1, §) = # —An(t) - —20 _es(0). (12.2.4
80, 5) | +eSy 188y ® (1 + &Sy’ " :

The small signal ac responses An(f) and s(¢) satisfy the following equations

i[Anm] 4_{14 D} [An(r)} _[thﬁ} (12.2.5)
- 2.

di | s -C B|| s |~

where A, B, C, and D are defined as

T 148 T (14 &SP

1 Vgg;StJ B 1 F\"ggﬁ

(12.2.6)
_veg'So __ Ve80

1468, (1 4+ eSy)*
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small-signal frequency response of the test laser for optical modulation from the
pump laser and use the same rate equations with a dilferent source term lo derive
the electrical modulation response of the test laser.

Electrical Injection For electrical microwave modulation, the electrons are
injected from the outer edge of the left sepatatc-confinement-heterostructure (SCH)
region and the holes from the outer edge of the right SCH region. The injected car-
riers diffuse through the SCH region and are captured into the QWs before recombin-
ing via the stimulated emission process. The transport effects can be modeled by
taking into account the carrier density in the SCH region, the carrier density in the
well region, and the photon densily separately. Coupling of the carrier density in
the barrier states above the QWs to the carrier density in the QWs is modeled by
two terms representing carrier capture and escape into or from the wells, respectively.
In this case, three rate equations are needed. The source term enters through the injec-
tion current in electrical modulation. The model considers carrier injection from the
outer edges of the SCH region, diffusion across the SCH region, and the subsequent
capture and emission of carriers by the QW.,

Optical Injection  For optical injection using an external pump laser, the pump
photon density acts as the source term. Because the optical energy of the pump
laser determines whether the photons are absorbed in the well or in the barriers,
we choose the pump wavelength to be longer than the band-gap wavelength of the
barriers and shorter than the band-edge wavelength of the wells so that absorption
occurs only in the wells. Compared with electrical modulation, optical modulation
with an optical energy in the absorption range of the QW directly produces
photon-generated carriers inside the test laser’s active region via the injection of a
modulated laser beam through one of the test laser’s mirror facets. Therefore, the
majority of carriers transporting through the SCH region is not required for lasing
action, although the coupling between SCH and QW states still exists for optical
modulation. In this way, optical modulation removes the severe low-frequency roll-
off due to the transport and parasitic effects and helps to clarify the intrinsic response.
The rate equations for both electrical and optical injections we writlen as

dNy(1) 1) Nu(t)  Ne(0) +Nw(f)vw

n; (12.3.1)
dt i V'IJ Th Thw Twh Vh S ﬁ:\
NSO NOVy N No® s [y '
2 —om D BT ol e el (1990 )
dt Tow Vw Tw Twh Vs 1 + f‘-SH'} e 1{*) : __)Ff-“"_'_#" ‘S‘F(‘k :

| e SO i R

where ¢ is the electron unit charge, g(N,,) is the optical gain at the carrier concen-
tration Ny, in the bound states of the wells, N, is the carrier density in the barrier
(continuum) states including the SCH and active layers, S is the photon density of
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Figure 12.12  The relative intensily noise (RIN) spectrum as two bias currents above threshold, The
symhols are experimental data and the solid curves are the theoretical fits. The shot nowse background is
also shown as the dashed line. (Reprinted with permission from [86] @ 1992 IEEE))

of the frequency. The RIN spectrum is thus given by

RIN  283,(w)

— 12.5.1
7 —p (12.5.12)

Further derivations for the spectral density using (12.5.6) and (12.5.7) lead 1o [83, 85]

_ S |H(w)]?
Seplw) = hoPy | (ay + c.'g(rj“)|—(+J)| + 1 (12.5.13)
(Ul.
RIN 2he 5 [H(w)|*
?Z Py (ay 1 arw )T‘f‘ . (12.5.14)

Typically, the last term (one) in the square bracket of (12.5.14) is much smaller than
the leading two terms, and is thus negligible [85]. The expression requires essentially
[our parameters: a,, as, o, and y, which can be extracted by fitting the experimental
RIN spectrum at various bias current above threshold. Figure 12.12 shows an
example of the RIN spectrum at two bias currents (symbols: experimental data;
solid curves: theory) [86]. The extracted relaxation Irequency from the peak of the
RIN spectrum shows a linear dependence on the square root of the optical power
output. The damping factor vy also shows a linear dependence on the squaredmkvﬁlinl_ rel ax. olion.
[requency with the slope determined by the K factor, The RIN characteristics of a
sericonductor laser under the injection locking condition shows a reduction in the
RIN noise [loor as well as an increase of the relaxation frequency controllable by
the injection laser power and detuning [87].
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13.3.2 Directional Coupler Modulator

For an incident optical beam into waveguide a in a directional coupler modulator, the
oulput power is

Py = b= |qu|22 sin?(W() (13.3.7a)
1 /2
V= (%B)ZK : ; (13.3.7b)
and
Py =Pu—Py=1- b)) (13.3.8)

where the input power is assumed to be 1. Because AB =~ B, — B, = kndre3V /d, we
plot the output power P, versus ABf. Suppose we design the modulator with a length £
such that P, =0, and P, = I, at AB = 0 (i.e., K¢ = 71/2). In order to switch to P, = 1,
and P, = 0, we require at least AB¢ = V3, assuming the field-induced change in the
refractive index affects the coupling coefficient negligibly. (Otherwise, we can caleulate
the field-dependent K and still use the expressions for P, and P, in (13.3.7) and (13.3.8)
to find the output powers.) To switch from a cross state to a parallel state, the applied
voltage has to be large enough such that AB¢ = /3 is satisfied. A plot of P, versus
A for KO = ar/2 is shown as the thick solid curve in Fig. 13.10. We also plot P,
versus ABL for K€ = ar, and K¢ = 37r/2. We see that complete switching from the
@ (cross) state to the © (parallel) state is possible (for K¢ = /2 or 3ar/2). For
Kt = ar, where we start with the parallel state at AB¢ = 0, it is impossible to swilch
to the ¢ state simply by changing AB¢ alone. This fact can also be checked with the
switching diagram in Fig. 811

Qutput power (P,)

Figure 13.10  The output power from waveguide a as a function of ASL for K¢ = /2, m, and 377/2 fora
directional coupler modulator,

A
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kl!:'ki +k.‘i

Wy = (o + o,

Figure 13.14  The diagrams for the diffraction of Tight by sound: (a) k = k; + Kk, wy = w; + w,, and (b)
k1l = ki =k, wy= @ — oy,

Similarly, (13.5.13) corresponds to the emission of a phonon from the incident

3 i [2h L]
photon. Here #i is I.hcA]"’lanck constant. Also noting that & — —n, and kg = —n, we
; p

find from (13.5.6) and (13.5.10)

. . ) :‘)E‘ (1)?” -
iki*VE; = iky— = — —=AnEy(r).
i 2c?

Because r; is along the direction of k;, and ry is along the direction ol k, we take r
along the x direction, and

ricos = x, rgcos = x, (13.5.14)
We obtain
(Hf:'l Ld‘,Aﬂ
= iKyE, = 1:3:5:15%
x bl Kia 2eco8 0 (S B5n)
dE, wyln "
—£ = iKyE; Ky = . 13515k
dx o 4 Secos 0 ( %)
Recause o, < ay, g we have ay ~ o = o and Ky ~ Ky = K
i\
s (13.5.16)

~ Jccos

The solutions for the coupled-mode equation given the initial conditions £:(0) and
L4(0) are

Li(x) = E;(0)cos Kx + iE4(0) sin Kx

. . (13:5:17)
Eq(x) = Eg(0) cos Kx + iF;(0) sin Kx.

Il initially, £4(0) = 0, the field anplitudes are

Ei(x) = E;(0) cos Kx Ey(x) = 1E;(0) sin Kx. (13.5.18)
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Figure 154 (a) A p-n junction diode under the illumination of a uniform light. (b) The charge
distribution p(x) under depletion approximation. (¢) The cleetric ficld E(x) obtained from Gauss's law.

Because p, is independent of x and ¢, we have al steady state if G(x, 1) = Gy is
independent of x and t,

— == ==L, (15.2.3)

The above equation can be solved by summing the homogeneous and particular
solutions

8pa(x) = cre” ¥ e . eye®-3he 1 Gy, (15.2.4)

where L, = /D, T, is the diffusion length for holes. The particular solution is due to
the optical generation. If the n-region is very long, we can set ¢, = 0; otherwise,

hq- Shork-L
- ‘5}10!1_ )

7
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Figure 15.6 (2} A p-i-n photodiode under optical illumination from the p " -side, (b) the charge density
p(x) under depletion approximation, (¢} the static electric field profile £(x), (d) the electrostatic potential
/b(.u), (e) the conduction and valence band edge profiles, and () the optical generation rate G(x).

Al steady state, the total photocurrent density consists of both a drift and a
diffusion component

J = Ty + Jaisr (15.3.3)

Considering the p"-region to be of negligible thickness, we look at the contribution
in the intrinsic region 0 <x < W

W
Jo = —q [G(x)dx = ~gSy(l —e™™™) = —gn®(A) (15.3.4a)
0

n=mn,0—-R( —e") (15.3.4b)

where the minus sign of the drift current density accounts for the fact that the drift
current flows in the —x direction, and m is the quantum efficiency including
the effects of surface reflectivity R and finite thickness of the absorption layer W.
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proportional to the optical intensity profile in the device

G(x, A) = Gy e *™*
Go = i1 = ROYIP(A)a(A) (15.6.8)
ANy ——

where ;f/is the absorption spectrum, ®(A) = Iy /hw is the optical flux density for an
incident optical power intensity I, (W/ cm?), and 7; is the intrinsic quantum effi-
ciency to account for the average number (100% maximum) of electron—hole pairs
generated per incident photon. Figure 15.21d shows the energy band diagram and
the quasi-Fermi levels for a small forward bias voltage (defined as positive for the
p-electrode). To obtain the /-V curve of a p-n junction solar cell, the key steps are
essentially the same as those for photodiodes.

I. Find the minority carrier density in the quasi-neutral region of the n and p
region in the presence of optical illumination with an incident photon flux
(optical intensity) at a given wavelength A for the given generation rate G(x,
A). The major equations are the diffusion equations in the presence ol carrier
peneration. The carrier densities or current densities have to satisfy the required
boundary conditions.

2. Calculate the minority current density at the edge ol the depletion region,
that is, J,(A) at x =x; (= W,—x,) on the n-side, and /,(A) at x = Xj+ Xy
the p-side, where x,, is the depletion width,

3. Calculate the contribution due to the drift current density due (o optical gener-
ation in the depletion region Jy,(A)

Ny
Jae(A) = ¢ Gpe “dx

Jx

= gn[1 — R(A) [P(A)e” M1 — e M), (15.6.9)

4. The total current density for an incident photon flux at a given wavelength is

JOA) = Jp(A) + Sy (D) + Jar(A). (15.6.10)

n

. The spectral response is defined as

J(A)

Sp(A) = —mm89 — — ——
R = T Ry O

(15.6.11)

6. The total photocurrent is obtained by integrating the product of the transmitted
photon flux into the solar cell and the spectral response to the maximum
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Figure 15.23 () The equivalent circuit of a solar cell. (b) The 7=V curve in the presence of shunt (Ry,) and
series (R,) resistances. In an ideal solar cell, the shunt resistance is infinity and the series resistance is zero,

conversion efficiency is reduced, as shown in Fig. 15.23b

e V — IR,
1= IpletV=R/pal _j) 7—“ (15.6.25)
sh

15.6.3 Quantum-Well and Multijunction Solar Cells

Quantum-Well Solar Cells By placing multiple quantum wells [111-121] in the
intrinsic region of a p-i-n structure, it is possible (o realize solar cells with improved
quantum efficiency, Fig. 15.24. It is important to maintain the built-in field across

Figure 1524 A multiple quantum-well (MQW) solar cell in a P-I-N structure. The intrinsic region con-
tains many quantum wells for enhanced absorption.
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(a) Encrgy band diagram
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Figure 15.26  (a) The schematics for the electron—hole generation rate as a function of optical depth into
the multijunction solar cell from the top wide band gap into the bottom narrow band gap region. (b) The
generation rate of electron—hole pairs is proportional to the optical intensity, which decays as a function of
position x. (¢) The absorption spectra of the three band gaps.

can be lattice-matched to substrates such as Si, Ge, and GaAs, with band gaps that are
complementary to those of other III-V compound semiconductors. The absorption
spectra of some ol these materials have been shown in Chapter 2, Fig. 2.4. Poor
minority carrier transport in HI-N-V materials is a critical research issue.

Figure 15.26a shows the schematic for the electron—hole generation rate as a
function of optical depth into the multijunction solar cell from the top wide band
gap into the bottom narrow band gap region. Figure 15.26b shows the generation
rale per unit volume ol the electron—hole pairs, which is proportional to the
optical intensity that decays into the solar cell depth. The ahsorption spectra of all
three band gaps are illustrated in Fig. 15.26c. The absorption of the solar radiation
spectrum by different band gap layers allows for the conversion of more photons
into electron and hole pairs. Carrier transport and collection become important
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(a) Equilibrium Circuit
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(a) Energy Band Diagram
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Physical Constants Symbol Numerical Values
Speed of light in free space e =29979 » 10° m/s
e -12
Permittivity in free space gy 8.8542 x 10™"* F/m
[
(WW x 107 I";’m)
Permeability in free space po =4m =107 H/m
Boltzmann constant ks =1.3807 x10"® I/K
Elementary charge gore =1.60219x10""C
Free electron mass my  =9.1095 x 10" kg
Planck constant o =6.6262 x 107 Js
~3 y,
Reduced Planck constant . h { = 1.05459 x 107 Js
i :

2m | =6.5822 x 107 "%eVs
Angstrom unit 1A =107"m=10"fem=10"* *um
Bohr radius ay = Y8R = 0529177 A

g
Ryberg energy R e o1V
= 57 =—|— | = 13.6058¢
2daeg)h’ 2my (aﬂ) e

Energy unit (clectron-volt) leV  =1.60219 % 10717
Thermal energy at 300K kpT = 25853 meV

Useful Formulas and Physical Quantities

1.2398
A

4
e - We/m) 1360586V

T 2@dme)th®  (es/e0)

Photon cnergy hw = h% = eV, where Ay in (pum)

Rydberg of an exciton

dmeh” /ey

Bohr radius of an exciton ap = - % 0.529177 A
elm, e fimyg
2
Quantized subband energy i h (5_7_1_“)2
in a quantum well B TTER
(infinite barrier model) .-

(m*/” )‘éq % 37.6033 eV (L is in A)
]

Con{ductiflj band density Ne—2 m;chZT ?U?: 551 5 1019 (M my T 2 i3
parameter Varit my 'g(){)
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