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Lecture 2 Outline

More on EM for optics

Concepts of Compound semiconductor
materials introduced in Chapter 1

Quick review of important concepts in
Semiconductor electronics

First HW assignment



Errata in Textbook

S.L. Chuang, “Physics of Photonic Devices,” Wiley, 2" Edition (2009)

A handout will be posted with the main errors which were found in the initial
printings of the 2nd edition (may have been corrected in latest printings).

To these we should add:

— Equation 3.2.18 “=“ should be “>”

¢ |z| >L/2
— Equation 3.2.23 “=“ should be “<“
e |z]| <L/2

— Equation 3.2.23: “L/2” not “L2” in exponent



Errata in Textbook

S.L. Chuang, “Physics of Photonic Devices,” Wiley, 2" Edition (2009)

Note these possible typos in Chapter 1 in formulas which are useful now:
1) Equation 1.3.1 should be:
a (A_‘_Bl__‘_C) = -m(AC) +(1- -r)cz(BC)

where a(AC) is the lattice constant of the binary compound AC and...

2) Equation 1.3.2 should be:
E,(A,B_C)=xE, (AC)+(1-x)E,(BC)—bx(1-x)



Compound semiconductor materials

Chapter posted on the class website

30. llI-V Ternary and Quaternary Compounds

Sadao Adachi

@ Springer International Publishing AG 2017
5. Kasap, P. Capper (Eds.), Springer Handbook of Electronic and Photonic Materials, DOT 10.1007/978-3-319-48933-9 30D



30.3 Structural Parameters

30.3.1 Lattice Parameters and Lattice-
Matching Conditions Between [lI-V
Quaternaries and Binary Substrates

The lattice parameter a (c) is known to obey Vegard's
law well, i. e., to vary linearly with composition. Thus,
the lattice parameter for a III-V temary can be sim-
ply obtained from (30.1) using the binary data listed in
Table 30.1 [30.3, 4]. Introducing the lattice parameters
in Table 30.1 into (30.3) [(30.5)], one can also ob-
tain the lattice-matching conditions for A,—,B,C,D;—,
(AyByC)—y—yD) quaternaries on various III-V binary
substrates (GaAs, GaSb, InP and InAs). These results
are summarized in Tables 30.2, 30.3, 30.4 and 30.5.

TaB,_.c=xBac+ (l —.I)BEC =a+ bx (30.1)

TaB,_.c =xBac+ (1—x)Bpc + Ca—px(l —x)

Eﬂ—l-bx—l-;‘.‘xz, (30.2)

bowing parameter



The playground of band gap
engineering
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Example for Nitride materials

Sohd State Communications 127 (20033411414

Universal bandgap bowing in group-III nitride alloys

1. Wu™P* W, Walukiewicz®, K.M. Yu®, .W. Ager I, S.X. Li™°, E.E. Haller",
Hai Lu®, William J. Schaff




Semiconductor Electronics
Quick Review



In most application of optoelectronic semiconductor
devices the attention is not on high-field hot-carrier
transport, as is the case for microwave devices and
highly scaled MOSFETSs.

Although devices generate or interact with extremely
high frequency EM waves, the transport of electrons
and holes is well described by the standard
semiconductor equations based on drift-diffusion.

The interaction between photons and mobile charges
is mostly based on quantum mechanics concepts.



Poisson’s Equation

Ve(eVp)=—p

* Relates charge density to the scalar potential

* £ can be ascalar or a tensor depending upon material
properties

Where:

p=q(p—;?+N;—f\-’:)=g(p—n+(f'o)

o AT AT— - ; =19 :
C,=N,—-N, and ¢g=1.6x10""C (unit charge)

e T A — - . ; e o ATF _ AT
Note: If p =0, this becomes the charge neutrality equation: n—p=N, - N

15



Carrier Transport Equations

Drift-diffusion equations

Express the behavior of
Boltzmann equation close
to equilibrium conditions

J]l — quﬂnE + qDHVn
J,=qu,pE—qD Vp

D kT

Einstein Relation: = SO
U q

D, D, B kT

, U, q

E=-V¢

1, 1s the electron mobility (not permeability f1)
11, 1s the hole mobility

D, 1s the electron diffusion coefficient

Dp 1s the hole diffusion coefficient

16



Continuity Equations

These are charge conservation laws, which in differential
form are related to the behavior of the divergence of charge
flow. They descend formally from Maxwell’s equations.

Starting with Ampere's Law: VxH=1J +8r_1D

J 1s composed of electron and hole currents: J=J__=J +J )

Using the vector identity V e (V X A) =0 (the divergence of the curl 1s zero):

0=Ve(VxH)=Ve 7+ 2D |=ves+Ve[ LD |=Ver+ Lvep=ves_+lvep
/ dt dt dt o or

since VoD = p (Gauss's Law): VelJ_ +%p =0
C

17



Continuity Equations

. . - \ .. dC
Using the expression p = g[p -n+N; - N;) = q(p —n+C, ) and realizing 5 =0
. / I

: * d d
V'(\JH—I—JP)-I-QE(_}J—IF]:{} or [?-Jn—qgn}r

d
V'J +q— =0
, qdrp]

d d
so |VeJ —g—n|=—|VeJ +g—p |=¢R
R is the net recombination rate of electron-hole pairs with units of em™s™

In cases where there 1s both generation and recombination:
R=R —G_(electrons) and R=R —G_(holes) and so
m n r P

ﬁ:(} —R +l?.J and a—sz —R —lTOJ & Contimuty Equations
af ] n g n ar ¥4 P q L




The classical “Semiconductor Equations”

* Using the carrier transport equations and the continuity
equations:

@—(_r —R +— Y’-J =G, R+ L, o|qu,nE+qD,Vn]

ot q q
=G,— R, + l\_’ . [—qy”ﬂV(p — qD,FH]
q
d
9P _ - R, ——\_-J =G,—R, ——\_ [qu nE—-qgD T’p]
ot q q

] o
=G,-R, _Ev'[‘%‘-’ppw‘wpw |

* Considering also Poisson’s Equation
Ve(eVo)=—qg(p—n+C,)

* These give 3 equations in 3 unknowns, which with the
boundary conditions can be used to solve for n, p, and ¢

19



Alternative description: Quasi-Fermi levels

E,

For a non-degenerate semiconductor:

{Fn (x.y.2)-E,(x .}‘,z)]

n(x,y,z)=n.e st

|:Ej(x.}‘,:}—ﬁj{x._}::):|

p(_rjylﬁz) — nfe. kgl

F, and F are the quasi-Fermi levels

n



Alternative description: Quasi-Fermi levels

J"..l

s e —E,/(2kgT)
Intrinsic Carrier Concentration: n = Nche :
Intrinsic Energy Level: E (x,y,z)=—q(x,y.2)+E,,

Where £, , 1s the system constant energy reference
Quasi-Fermi Energies:

F,(x.y.2)= =g, (x.v.2) + E,,
F,(x.y.2)==49,(x.v. )+ E,,

21



Carrier Distributions:

n= [ f(E)p,(E)dE

p= | f,(E)p,(E)dE

where p,(E) and p, (E) are the electron and hole
density of states (respectively) and f(E)
1s the Fermi-Dirac Distribution

1
f(E) = 1+ E(E_EF}"{'RHT

1

(E=F, )ikgT

For Electrons: [ (E)=

1+e

For Holes: ./}j(E)=1—f(E)= (7Bt
1+

= Applies to both degenerate and non-degenerate cases

General Case
Fermi Distribution (n-type)

) T
flE) 1 12 0

Fermi Distribution (p-type)

[1—F(E)] E

22



Density of states

In a volume of finite size defined by lengths

L.L i and L _, the electron can be approximated /

as a "free electron" with discrete values for the
wave number which must satisfy the relations:

T T T
k.=m—, k =n—1, Kk, :IZ

x y
where m, n, and | are positive integers.
The energy of an electron with wave numbers k., k, , k_ 1s:

-

-

E= ;;; (k7 + k] +K7)

Each set of k vectors represents a state, and 2 electrons can occupy a single state.
The number of electrons per unit volume is found by summing the probability of

individual state occupancy over the total number of states:

2
=222 2 (E)

23



Density of states

The set of allowed energies (states) can be thought of as a

lattice of discrete points 1 k-space defined by unit vectors

of length [HJ i cand {H]
L L L.

X v Z
The number of lattice points contained in a kK-space region

dk dk. df.
Ak
T

with size dk, X dk,, X dk, 1s therefore:

As the volume icreases, the spacing between allowed energies

decreases and the sum of the previous slide can be replaced by an integral:

Dal e Ol

=33 )= | [ [k dk, dk.f,(E)
V% k, k. T

000
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Density of states

Consider a system using the parabolic band model with spherical symmetry:

The number of states below an energy E 1s formed by an eighth sphere in k-space:

2 2(1 4 1
N(E)=—3jd5k ——(— Zrk ) i
T, 8 3 -
x 3\ 112
f k - 2 /2 N states inside
USIIlg E E + : ﬁ k = ( nje J (E —_ EC )1 first octant
2m. - N
N(E) = 1 5 [ 2”3€ (E —_ EC )jf: Lo dN states within shell
3=\ n° n

AN 332
AN(E)y 3 1 (2n : 1 (2 »
p.(E)= d;)zg. 2[ ”f*—’} (E-E.)" = ,_,( ”ff‘] (E-E.)" for E>E,

Similarly for holes:

w32

dN(E 1 (2

P (E)= dfg) . [;*h] (E,-E)" for E<E,
—| 5

25



Density of states

From the previous slides:

32
1 Zm /2
n= J.ﬁ,(E)pe(E)dE J' (E EVT 3 ( } (F,,—Ec)l dE

o
D= J'f (E)p (E)dE J‘ 1 2?}1;:' 3*{3(E e )1;2 JE
h Jg F E}I.BT 212 P A
Using the Fermi-Dirac mtegral:
> jd.l'
Fj(n)_ ] E)[ 4 ol
" N 3/2 " N /2
F-E. kT T
n=N_.F,| ———<| where N.=2 Tl > = 2.51x10"| 2 cm”™
T kT | 2wh” m, 300
' ~ 3/2 N 32
E,—F k. T | T :
p=N,F,| ——2 | where N, =2 T =251x10° | 2= | op
kT 2rh’ m, 300
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Approximation of Fermi-Dirac Integral

1y

The Fermi-Dirac integral is defined as:
10/

1 T xXldx ’:
F.(n)= o
E

10

An approximate analytical form 1s given by: 107

|
e "+C,(n)

F;(n)=

|

Boltzmann
expin)

/
"4— (413) (nm)':
[ Degencrile
I
I
I

Forj= 5 the expression for C giving an error of less than 0.5% 1is:

3 ?r/»_ 1/2
Cug (”) — ( )

{n+2i3+ﬂn—213

5n2 732
12/5 .
+9.6] ]

27



Approximation of Fermi-Dirac Integral

Another approximation of the Fermi-Dirac integral valid for ‘I}‘ >1andj=1/21s:

Fi}rj(II) — En fmr I? {{: _1 1) v :‘, vvvvvv s r'—v—:
- 3 v - | Boltzmann 4 :
A for n>1 & l exp(n)
3\ g} A
2 10° e,
? : b&— (413)(nYim)'"
L / Degencrile
U I
=0 !
I
}(lI »A—L—L-‘-A_A_*—JL_L_A_A_LA,H_L_J-.LtL_A__A_.A-—A-J-—h
J 0 5
Approximate Inverse (Nilsson, 1973)
ln(u) V
n= +v— .
1-u 14+(0.24+1.08v)

2/3
u=F,(n)  v=(3Vr-u/4)

28




Determination of Fermi level

Consider a bulk semiconductor in equilibrium
, . SO - _ AT+
Charge Neutrality: n,+ N, =p + N,
N7 is the ionized acceptor concentration and N, is
the 1onized donor concentration

In the simplified model, N, ~ N, but more specifically:
N} =(Density of Acceptors )X (: Probability State is Filled)
i 1 N
=N R T, JEEVA
A A

g, 1s the ground state degeracy factor for acceptors

29



Determination of Fermi level

For common semiconductors g, =4 : 2 spin states, 2 degenerate bands (lh, hh)
Similarly for donors:

N; = (Density of Donors ) x ( Probability State is Empty)

1

1 —
— l?\lrﬂ ]-_ 1 Z> ND
|4+ — o\ EoEe)/isT 1+g,exp
i Sp

gp 1s the donor ground state degeneracy, and g, =2 (2 spin states)

EF _ED
k,T

Using the expressions for N, and N, with charge neutrality

the Fermi Energy can be determined.

30



CARRIER CONCENTRATION (cmi®

Determination of Fermi level

10'% Ny Si(300 K)

10'® n-TYPE WITH Np=10"8 cm™ n

o' _ EC - EF) .

10'€ N{_“ cxp( kT —

10'% N;

10" N , )

Mo D 1 + 2 exp(EF - ED)

10'¢ kT

o' p

© EV - EF

r.:% + Nv exp( kT )
W. Shockley, Electrons and Holes in Semiconductors, D. Van Nostrand, Princeton, N.J., 1

1950.



Determination of Fermi level

ASSllII]iIlg d IlOIldegenEl‘ate case.
Epo—E)k,T E.—E- Wk, T
”ﬂ :”J,-E'{' ! e] ] :N[-E[ F r._} ]

(E—Ep)kgT ~N E}(gﬁ,_g,. WkgT

p,=ne L€

In equilibrium, by multiplying these expressions it can be seen:

(Ep—E;)ikgT  (E—Ep)lkgl 2

n.p,=ne n.e —n

1
=N, JEx—Ec)lkgT N o\ EvEr )ikl = N,_N,e Eq kT

Vv

For n-type material, N, — N, > n,
=N;—N;andp, =n’ f(N; — N‘;)
For p-type material, N, — N, > n,
p,=N,—N; andn =n’ f(N; — N;)
The expression for the itrinsic energy can be shown to be:

£ E.+E, N 3k, T I mz{

{ 2 4 m

'S
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Light Hole Effects

Total hole concentration: p=p, +p,

E —FE m. kT
=N"F,,| =——% | where N/ =2| £

and

E —E m. k. T
— NHEF . v F ‘vhere th _ 2 Ih B.r

33



ASSIGNMENTS:

Reading Assignments
Chuang — Chapter 1, Section 2.2

Coldren & Corzine — Chapter 1 (Supplemental)

Paper by Adachi (2017) posted on class website

For a concise refresher of semiconductors you could also consider:

Chapter 1 of the classic book “Physics of Semiconductor Devices” 3 edition (2007) by S.M.

Sze and K.K. Ng, which you can freely download from our library.

Also available at:
https://archive.org/details/PhysicsOfSemiconductorDevices_855/page/n221/mode/2up





