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Lecture 5 Outline

Some more quantum mechanics refresher
Density of States in different dimensionalities

Perturbation theory in quantum mechanical
applications

Time-independent Perturbation

Time-dependent perturbation and Fermi
Golden rule



Quantum wells are very important in optoelectronics
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Infinite quantum well — The solution in each region has the
form of two counter-propagating plane waves
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W(x) =Ae™ + Be ™  where k=

The constants A and B are determined by applications of
boundary conditions. In Region 1 and 3, k is purely imaginary
(evanescent wave) and there is only a forward wave in region
3 and a backward wave in region 1. However, because the
potential is infinite, there is no wave penetration and the
wave function must be zero at the boundaries of the well.
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Combination of the two waves give a cosine standing wave
for odd integer and a sine standing wave for even integer
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Example
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Finite square well
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Boundary conditions

1) continuity of the wavefunction across the boundary.
11) continuity of the electric current across the boundary.

Current carried by one electron

k. hod
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m™* dx

| = —qv =
m*

Trick: Substitute crystal momentum with
quantum-mechanical momentum operator

Boundary condition conserving electric current
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Application of Boundary conditions
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HEW l I?!B
Ce IRL(M?!W + rkmB) +D(MHW fkm;) = ()
. L :
X =-35 Using the same procedure

Cﬁf_ikL(h'ma: — fkmg) -+ D(h‘m} + r'km:;) =0



C(’ka(h'IHa; - fkmj;) + D (Kkmy, — fkmg) =0
C:?_M(h‘mfy — fkmg) + D (kniy, + .fkmj;) = ()
Solution exists if the determinant of coefficients is zero
2i (icmy ) “sin(kL) + 4ikmyemy, cos(kL) — 2i(kmy) sin(kL) = 0
cot(kL) — (kmg)_ — (h‘mfv)_

- h
2kmyms, o J2m, (V,~ E)
h

The equation gives the energy of the quantized states in the well.

It can be solved by numerical iteration to a desired accuracy. It can
also be solved graphically.
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Comparison between wells

L=10nm

Vo m*g m*y E; (eV) E>(eV) E; (eV)
Infinite well o0 — 0.066 0.056 0.223 0.502
Finite well 0.25 eV 0.092 0.066 0.03 0.121 0.245

In many practical situations relevant for optoelectronics,
guantum wells have only several energy levels.
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In realistic conditions, there is a field across quantum well,
due to applied potentials, differences in electron affinity
between the heterostructure materials which define the well,
and to the charge distribution associated with the wave
functions and with ionized impurities, as well.

The time-independent Schrodinger equation should be solved
simultaneously with the Poisson equation for a self-consistent
solution.

In addition, there may be onset of quantum Stark effect which
tends to separate energy levels in confined spaces when an
electric field is applied. The energy shift can be calculated by
perturbation theory.
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Example: Voltage drop of 0.1 V across the 10 nm well
examined earlier, cause an electric field of 10°Vcm™.

The estimate for shift in energy caused by Stark effect is about
2 meV.

E=10°V —cm !
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GaAs
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Tunneling

W(x)= 4e™ + Be™ W(x)= Fe™ +Ge™
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Transmission coefficient — analytical result for rectangular well
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Tunnenng Case | HIT — m; — 0 % 10—31 kg
the barrier width is 10 nm and the barrier height is 0.25 eV
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the barrier width is 10 nm and the barrier height is 0.25 eV

1 | L 4 1 1 1 1 b ' 1 1 R
| | L
09} ]
08} :
= 07} .
o
£ 06f .
@
O
O o5+t \/ .
-
K]
@ 04 :
£
2 03} U :
©
= 02l
01} :
0 1 J 1

0 005 01 015 02 025 03 035 04 045 05
Incident particle energy, eV 17



Tunneling

0.7 |

Case Il my # m; m; =9 x 107! kg, mj = 0.066m;.
the barrier width is 10 nm and the barrier height is 0.25 eV
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Tunneling

Transmission Coefficient
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Tunneling in reverse biased p-n junctions

Valence band

1] 1]
Ve

20



Simple model for tunneling current (GaAs)
tunneling current J}'lnm — N4V
I — N'.;T
1

vegr = 1.2 x 107 cms™

Ny = 4 valence electrons/atom x 8 atoms/unit-cell/unit-cell volume

= 1.7 x10% L‘;ITI_'?}

transmission coefficient

I
I = — —
cosh? (kL) + (ﬁ) (E:‘ — i:) sinh? (kL)

(Approximation: this is for a rectangular well. Well is actually triangular)

21



Simple model (GaAs) . 122
E—=2kyT ———
2 2m*

where 7' 1s the temperature

electrons at the valence band edge have thermal energy
barrier height V() = £, = 1.43 eV

approximate average wave vector in the forbidden gap

I —
K= /21?.**(Eg — kgT) and |x| = 1.4 x 10" m™" > [k
z

width of the barrier

€ Eg/xq B #;'ZQND V

here V = Vi o -
L \f £E0 where V = L‘r"f},”hf’ff + {/)buffr—fn
Lol

(Assume one sided junction with Ny = 10® cm™ and reverse bias V=-1 V)

=27 x 107" m Note: rl > |
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Simple model (GaAs)

set effective masses my =m, =m

approximate transmission coefficient since K[ > |

1 ¢ 2 2 _
T = - 16(J_2KL( ki ) o~ 16[!(.] e 2L

* * 2
e 2 ¢ 1) [ Ky _kmg) L 2 ¢
cosh” (kL) + (4) (m: o sinh” (kL)

also
2 —
Eg [2m*Egeeo L k kT _

(L= = GV 2) = 2L hereTis atur
J n \/ SN,V 0 (K) o, where 7' 1s the temperature
3kpT -
finally T~ 16( 2281 ) ,—2GV 2

2F,
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Result from a simple tunneling model

Tunneling current density (A/cm2)
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Density of States




2D Density of States
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g(E)

A perfect 2D electron gas is approximated by a sheet of graphene, for instance.
Often a quasi-2D electron gas is realized with a double heterojunction where a

material with smaller bandgap is sandwiched between layers with larger bandgap,
forming a quantum well of width L,.

For density calculation

1.0cm

Volume of the quantum well

V=10cm X1.0cm XL,
27



g(E)

A perfect 2D electron gas is approximated by a sheet of graphene, for instance.
Often a quasi-2D electron gas is realized with a double heterojunction where a

material with smaller bandgap is sandwiched between layers with larger bandgap,
forming a quantum well of width L,.

Carrier Density

VZf(E) SIS rE)

m kx ky

separate quantized direction

Assume that each quantum level functions as
a “virtual” conduction band level associated
with a parabolic band for the transverse
momentum (with x and y components)
hZ
E=E,+-—kf
m Zm* tm

e

k2, = 2’"6 (E—E,) for E=E,
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1D Density of States 2 dke
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Perturbation theory

Simple quantum mechanical problems (e.g. rectangular
quantum well) can be solved exactly, either analytically or
numerically. The majority of problems for general systems,
however, cannot be solved exactly.

Perturbation theory is an approach to deal with those cases
that can be considered small deformations of systems we can
solve exactly. We are going to consider a Hamiltonian operator
(for simplicity eigenvalues are non-degenerate)

H=HO® + ) H

VAR N

unperturbed small perturbation
Hamiltonian parameter potential




Consider the time-independent Schrodinger equation in short-
hand form for the Hamiltonian operator H = H(® + \H’

Hy = Evy

We assume that we can solve the equation for H® and that we
know the corresponding eigenvalues and eigenfunctions.

0 0 0
HOQ® = £

Since A is a small parameter, we can expand those solutions in
series.

E=EOQ +)XE@W £ )2E@ 4 ...

v = w0 4+ 3y 422y @ 4 ...

After substitution into the Schrédinger equation of H, E and vy
we can define approximations of increasing order.



The Schrodinger equation becomes

= (E(O) -|— }LE(l) -|— }LZE(Z) _|_ ...)(\V(O) -|— Xw(l) -|— 7L2\|](2) _|_ ...)

(HO +3H') 2 09 (@
q=0

z 24" E@) z A9 (@
1q/=0 . | q=0 |




We can solve now order by order in A.

Oth Order) H(O)\lj(o) = E,'EO)\V(O)

This is the same as the unperturbed equation with solutions

0 0
W = g

ETSO) _ Er(lO)

The wave functions are orthogonal so that

<100 > = [ ¢’ We@dr = [lo@P dr =5y,



15t order)

(HO +2.H ) (y® +iy® .. =
(E© + AED ) (y©® + 1y )

H(O)\V(O) + }LH,\V(O) + H(O)},\V(l) + KZH’w(l)

HOFO +0H y© + HO)y@® 4 )24 D

HOy® 4 H'y© = O, D) 4 F1),©)

(H(O) — E(O))\p(l) n (H’ — E(l))\u(o) =0



(H(O) (0))\|,(1) (E(l) H')\IJ(O)
The first order wave function perturbations w(¥) can be
expanded as linear combination of the unperturbed solutions,

which are orthogonal with < qom)|<p,g0) > = Omn

0
v =Y e

m

(Hm) _ E,S‘”)\yn(l) — EMyp O _ gy 0

After multiplying by <p( )* and integrating over space (“inner”
product)
HI
E,gl) = Hpy af,,{% =~ — oy With m#n
En _Em



Enforce normalization of the “perturbed” wave functions

0
J (cpﬁo) fn%«)ﬁ?)) (wfl) &%wﬁf) d*r =1

m m

1 0
J%(lm gDn)dg,,Jrj (0)+ z MOONEN

1 0 0 1 0 0
o (Tosma) o+ [ (3 fnzlm)z B =1

We are free to choose norm and phase, so that the wave functions are

(0)

normalized and the inner products with ¢, are real numbers. This implies

that to first order a(l) = 0.



Finally, for first order perturbation we have

HI
0 0
Yn = 907(1 ) z E(O) Tn (0) §01(1 )



24 order) HOW® 4 Hy® = FOy@ 4 FM(1) 4 F@)y(0)

In terms of zero-order solutions

2) (2) 0
\V7(1) _ amn§07gl)
m
H . H
(2) _ ) 4 _ mniinm
En _ z amnHmn — Z E(O) B E(O)
m+n m#+n n m
H . H, H,  H
ar(yzgz _ 2 mk*tkn . mniinn {m " Tl}

oY R | COm) B e

We can again impose normalization and phase of the wave function at second
order, which implies (y©@|y®) = (y@|y®) = —%(\p(l)m}(l)) or

1 2
2 1
ay(m)l ) E |a£m)1

m+n



In terms of zero-order solutions, 2" order perturbation results are

NOM 2 Hn mO
£ _ g0

m+n n
T Z :-Z (0) I;;;kH;(?m O il | om
m#n \_kin (E — En )(En — Ey ) (E,go) — E,Sg)) _
_ Hul* )
2(ES” - E,SS))Z j

E, =E® +H + [ Hrm |
n-— ~n nn E(O) Efn?)

m#*n n



Simple example

Starting from an infinite quantum well, apply a potential

perturbation as in the figure:
H =V, O0<x<L/2

Ve 00 e—




1) _ o _ (0)* 47, (0) ;43
E " =Hp,= | o He, d°r
With reference x = 0 set on the left wall, the wave functions are

—

2  nmx
7(10): ZsinT dx
VL/z
2
E,(f):—f Vo sin® nmx L
L Jy
2V, 1 nmx = Nmux x)-/? 2Vog LV,
=L jTomEeosTsinTmton =T g= g
a 0
Vi
0 0
En%Eé)'F?

1 X
j sin®(ax) dx = —=—-cos(ax) sin(ax) + =
2a 2




Time-dependent perturbation theory

Consider a physical system described by a time-independent
Hamiltonian (assumed to be discrete and non-degenerate)

Hy oy, = Eq

Suppose that at t =0 a time-dependent perturbation is
applied to the system

H(tZO) =HO “7LH,

where the parameter A << 1. The system is initially in the state
@; which is an eigenstate of H, with eigenvalue E;.

We are looking for the first-order approximation of the
probability Pij(t) of finding the system in another eigenstate

@r of Hy at time ¢.



The Schrodinger equation is

9
ih —w(r,t) = Hy(rt) = (H + AH)y(r,t)

We assume to know the time-dependent solution for the
unperturbed Hamiltonian

0
i a@n(r: t) = HO gon(r, t)

—iEnt/T

Qﬁn(l’, t) = gon(r)e
Expand y(r, t) in terms of the unperturbed eigensolutions

W, ) = ¥, an(t) @, (r)e~Ent/N

dove |an(f)|2 Is probability for the electron to be in staten at ¢
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Substitute the expansion in Schrodinger equation

ih %(Z @, () @ (r) e~ Ent/P )

n

= (Ho + .H) (Z MOPNG e-iﬁnfﬂ*’)

n
First term of equation above

i Z da; © () el Z an(t) 5 < (@n(r) eiEnt/1)

n

\ J

Y
@ H{] QOH(I‘, t)

da, (t) i ,_ »
N TR (1) e = — N A (1, ), (8) gy (1) e/
n n
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da, (t ) i |
D S on®) e B = L A (5,000, (0) () €50
n

n

Take inner product with ¢, (1)

dany(t) i | o
:;f - E )LZ a,(t) Hy,(t) e i(Em—En)t/h
n

Hiun () = [ 030(0) H' (1,00, dPr

Now write the coefficientsin the form of a power series
a, () = a®@®) + raP ) + 12aP () + -

We seek the solution to first order in L.
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dap(t) i | -
;It -7y AZ a,(t) H,,, (t) e {Em En)t/h
n

a,(®) = a” @) + ralP (@) + 2222 () + -

We have

dag)

dt

day)(t) i o o

T;t T h Zaﬁ,)(f) H' (t) e {Em=En)t/h
n

da(Z)(t) I ) | - )
T;t T h Zaﬁ,)(f) H!  (t) e~ {(Em=En)t/h
n

=0
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Fermi Golden Rule

We will use the main results of time-dependent
perturbation theory to determine the transition
probability from one state to another, due to
an external perturbation.

Absorption Stimulated Emission
O
9 E, =ho, E =ho,
ho "\ NS\~
ho "N\~ no NN\ ho A\ e
4,




constantand electron stays in that state in absence of perturbation
(0) rpy
a; () =1

a2 =0  m=i

The first order solution is obtained from Wi =

da(l)(t) i r I i r L
= = Hyy(8) eI Ent/h — = Hip (£) e me!

Assume time-dependent perturbation (e.g., photons) with form
H'(r,t) = Hy, (1) ™0 + Hit (1) e

H'rfni(t) = j(P:n (l‘) Hr(l’, f)@i(l‘) d3r — H';nie_imt + H;?;-EEEMt
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Initial staten =i Ofi ="
dalP@t) i
— ——[—[ t —lwmit
0 i(t) e

— (Hmi el(wmi—w)t +Hr’r-ll_i ei(wmi+w)t)
Integrate equation between 0 and ¢t for a final statem = f

(1) 1| ei(wfi—w)t —1 ” ei(wﬁ+w)t —1

h Wi — W wri + W

The associated probability is

‘ (1) (t)‘ Hfl




1 el(wfi—w)t 1 el(wfi+w)t 1
h Wi — W wri + W
sinx = Zii(e‘x e ‘x)
e~i(@ri—0)t _ 1 = 2j¢ oy w)tsin Leon 2_ ok
—w)t A
i sin? G et sne L
2 2 2 —+ X
4 (wfi — w) § (wri + w)

drop cross term
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2 4|H'-|2 sin? (wﬁ _ w)t 4|H’ | sin? (“)fi + “))t
o) =2 2 i 2
f (e 0) e (wpt w)

For a sufficiently long interaction time

2T

t 21t 'y
o [HA 8w = ) + S |78 (g + w)

o@D o) =



21t

2 21t
o) = = [HA| 8w — ) + = |Hft [*6(wpi + )

Using the property S(hw) = 5(0))/?‘2 the transition rate is given by

Weey = gl

Wi = |Hfl| “5(E; — E, —hw)+—|H; *5(E; — E; + ho)



2T
B2

2

2 t it
|a}1)(t)| | le §(wsi — w) + |Hﬁ| §(wsi + w)

Using the property 5(hw) = 5(0))/?‘2 the transition rate is given by

Weey = gl

energy conserving delta functions

&« ~
Wi = |Hfl| “5(E; — E, —hw)+—|H; *5(E; — E; + ho)
) )
Ef=Ei+ha) Ef=El-—ha)

absorption of a photon emission of a photon
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Reading Assighments:

Chapter 3 of Chuang’s book



