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Lecture 5 Outline 

• Some more quantum mechanics refresher 

• Density of States in different dimensionalities 

• Perturbation theory in quantum mechanical 
applications 

• Time-independent Perturbation 

• Time-dependent perturbation and Fermi 
Golden rule 
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Quantum wells are very important in optoelectronics 
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Infinite quantum well 
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Infinite quantum well – The solution in each region has the 
form of two counter-propagating plane waves 

The constants A and B are determined by applications of 
boundary conditions.  In Region 1 and 3, k is purely imaginary 
(evanescent wave) and there is only a forward wave in region 
3 and a backward wave in region 1.  However, because the 
potential is infinite, there is no wave penetration and the 
wave function must be zero at the boundaries of the well. 
 
Solution: 
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Combination of the two waves give a cosine standing wave 
for odd integer and a sine standing wave for even integer 
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Example 

𝐿 = 10 nm 

𝑚 = 0.066 𝑚𝑜 
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Finite square well 

continuum states 

quantized states 
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Current carried by one electron 

Boundary condition conserving electric current 

Boundary conditions 

Trick: Substitute crystal momentum with 
quantum-mechanical momentum operator 
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Application of Boundary conditions 

Using the same procedure 



10 

Solution exists if the determinant of coefficients is zero 

The equation gives the energy of the quantized states in the well.  
It can be solved by numerical iteration to a desired accuracy.  It can 
also be solved graphically. 
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𝐿 = 10 nm 
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Comparison between wells 

𝐿 = 10 nm 

In many practical situations relevant for optoelectronics, 
quantum wells have only several energy levels.  
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In realistic conditions, there is a field across quantum well, 
due to applied potentials, differences in electron affinity 
between the heterostructure materials which define the well, 
and to the charge distribution associated with the wave 
functions and with ionized impurities, as well.   
 
The time-independent Schrödinger equation should be solved 
simultaneously with the Poisson equation for a self-consistent 
solution.  
 
In addition, there may be onset of quantum Stark effect which 
tends to separate energy levels in confined spaces when an 
electric field is applied.  The energy shift can be calculated by 
perturbation theory. 
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Example: Voltage drop of 0.1 V across the 10 nm well 
examined earlier, cause an electric field of 105 V cm-1 .   
 

The estimate for shift in energy caused by Stark effect is about 
2 meV. 
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Tunneling 

Transmission coefficient – analytical result for rectangular well  
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Tunneling 
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Tunneling 
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Tunneling 
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Tunneling 



20 

Tunneling in reverse biased p-n junctions 
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Simple model for tunneling current (GaAs) 

tunneling current 

(Approximation: this is for a rectangular well.  Well is actually triangular) 

transmission coefficient 
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Simple model (GaAs) 

approximate average wave vector in the forbidden gap 

(Assume one sided junction with ND = 1016 cm-3 and reverse bias V=-1 V)  

width of the barrier 

electrons at the valence band edge have thermal energy 

barrier height 

Note: 
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Simple model (GaAs) 

set effective masses 

approximate transmission coefficient since 

also 

finally 
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Result from a simple tunneling model  
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Density of States 
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A perfect 2D electron gas is approximated by a sheet of graphene, for instance.   
Often a quasi-2D electron gas is realized with a double heterojunction where a 
material with smaller bandgap is sandwiched between layers with larger bandgap, 
forming a quantum well of width Lz. 

Lz 

N quantum levels 

𝐸1… 𝐸𝑁 

… 

𝑥 

𝑦 
𝑧 

Volume of the quantum well 

𝑉 = 1.0 𝑐𝑚 × 1.0 𝑐𝑚 × 𝐿𝑧 

1.0 𝑐𝑚 

For density calculation 
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A perfect 2D electron gas is approximated by a sheet of graphene, for instance.   
Often a quasi-2D electron gas is realized with a double heterojunction where a 
material with smaller bandgap is sandwiched between layers with larger bandgap, 
forming a quantum well of width Lz. 

𝑛 =
2

𝑉
 𝑓 𝐸 → 

2

𝑉
  𝑓(𝐸)

𝑘𝑦𝑘𝑥𝑚𝑘

 

Carrier Density 

separate quantized direction 

Assume that each quantum level functions as 
a “virtual” conduction band level associated 
with a parabolic band for the transverse 
momentum (with 𝑥 and 𝑦 components)  

𝐸𝐹  
𝐸𝐶  
𝐸1 

𝐸2 

⋮ 

𝐸𝑁 𝐸 = 𝐸𝑚 +
2

2𝑚𝑒
∗ 𝑘𝑡,𝑚

2  

𝑘𝑡,𝑚
2 =

2𝑚𝑒
∗

2 𝐸 − 𝐸𝑚      for    𝐸 ≥ 𝐸𝑚  
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𝑛 = 
2

𝑉
  𝑓 𝐸

𝑘𝑦

 →  

𝑘𝑥𝑚

  2
1

4𝜋2𝐿𝑧
𝑓 𝐸  2𝜋𝑘𝑡,𝑚 𝑑𝑘𝑡,𝑚

∞

0𝑚

 

  
1

𝜋𝐿𝑧
𝑓 𝐸  𝑘𝑡,𝑚 𝑑𝑘𝑡,𝑚

∞

0

=    
𝑚𝑒
∗

𝜋𝐿𝑧2
 𝐻 𝐸 − 𝐸𝑚 𝑓 𝐸 𝑑𝐸

∞

0𝑚𝑚

 

 

 
𝑚𝑒
∗

𝜋𝐿𝑧2
  𝐻 𝐸 − 𝐸𝑚
𝑚

  𝑓 𝐸 𝑑𝐸

∞

0

 

step function 
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𝐷 𝐸 =
𝑚𝑒
∗

𝜋𝐿𝑧2
 𝐷 𝐸 =

2𝑚𝑒
∗

𝜋𝐿𝑧2
 𝐷 𝐸 =

3𝑚𝑒
∗

𝜋𝐿𝑧2
 ⋯𝐷 𝐸 =

𝑛𝑧𝑚𝑒
∗

𝜋𝐿𝑧2
 



31 



Perturbation theory 

32 

Simple quantum mechanical problems (e.g. rectangular 
quantum well) can be solved exactly, either analytically or 
numerically.   The majority of problems for general systems, 
however, cannot be solved exactly.   
 

Perturbation theory is an approach to deal with those cases 
that can be considered small deformations of systems we can 
solve exactly.  We are going to consider a Hamiltonian operator 
(for simplicity eigenvalues are non-degenerate) 
 

𝑯 = 𝑯(0) +  𝐻′ 
 

unperturbed 
Hamiltonian 

perturbation 
potential 

small 
parameter 
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Consider the time-independent Schrödinger equation in short-

hand form for the Hamiltonian operator 𝑯 = 𝑯(0) + 𝑯′ 
 

𝑯 = 𝐸 
 

We assume that we can solve the equation for 𝐻(0) and that we 
know the corresponding eigenvalues and eigenfunctions. 
 

𝐻(0)𝜑𝑛
(0)

= 𝐸𝑛
(0)
𝜑𝑛
(0)

 
 
Since  is a small parameter, we can expand those solutions in 
series.  

𝐸 = 𝐸(0) + 𝐸(1) + 2𝐸(2) +⋯ 
 = (0) + (1) + 2(2) +⋯ 

 
After substitution into the Schrödinger equation of 𝐻, 𝐸 and  
we can define approximations of increasing order. 
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The Schrödinger equation becomes 
 
 

𝑯(0) + 𝑯′ (0) + (1) + 2(2) +⋯ = 

 

= 𝐸(0) + 𝐸(1) + 2𝐸(2) +⋯ (0) + (1) + 2(2) +⋯  

 
 

𝑯(0) + 𝑯′  𝑞
∞

𝑞=0

(𝑞) =  𝑞′
∞

𝑞′=0

𝐸(𝑞′)     𝑞
∞

𝑞=0

(𝑞)  
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We can solve now order by order in . 
 

0th order)  𝐻(0)(0) = 𝐸𝑛
(0)
(0) 

  
   
This is the same as the unperturbed equation with solutions 
   

𝑛
(0)

= 𝜑𝑛
(0)

 
 

𝐸𝑛
(0)

= 𝐸𝑛
(0)

 
 
The wave functions are orthogonal so that  

< 𝜑𝑚
(0)
|𝜑𝑛

0
> =  𝜑∗ 𝐫 𝜑 𝐫 𝑑3𝑟 =  𝜑 𝐫 2 𝑑3𝑟 = 𝛿𝑚𝑛 
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1st order)    

𝑯(0) + 𝑯′ (0) + (1)… = 

𝐸(0) + 𝐸(1)… (0) + (1)…  

 

𝑯(0)(0) + 𝑯′(0) +𝑯(0)(1) + 2𝑯′(1) 
= 𝐸(0)(0) + 𝐸(1)(0) + 𝐸(0)(1) + 2𝐸(1)(1) 

 

𝑯(0)(0) + 𝑯′(0) +𝑯(0)(1) + 2𝑯′(1) 
= 𝐸(0)(0) + 𝐸(1)(0) + 𝐸(0)(1) + 2𝐸(1)(1) 

 

𝑯(0)(1) +𝑯′(0) = 𝐸(0)(1) + 𝐸(1)(0) 
 

𝑯(0) − 𝐸(0) (1) + 𝑯′ − 𝐸(1) (0) = 0 



37 

𝑯(0) − 𝐸(0) (1) = 𝐸 1 −𝑯′ (0) 

The first order wave function perturbations (1) can be 
expanded as linear combination of the unperturbed solutions, 

which are orthogonal with < 𝜑𝑚
(0)
|𝜑𝑛

0
> =  𝛿𝑚𝑛 

 

𝑛
(1)

= 𝑎𝑚𝑛
(1)
𝜑𝑚
(0)

𝑚

 

𝐻(0) − 𝐸𝑛
0

𝑛
(1) = 𝐸 1 𝜑𝑛

0 −𝐻′𝜑𝑛
(0) 

 
 

After multiplying by 𝜑𝑚
0 ∗

 and integrating over space (“inner” 
product) 

𝐸𝑛
1
= 𝐻𝑛𝑛

′                   𝑎𝑚𝑛
(1)

=
𝐻𝑚𝑛
′

𝐸𝑛
0
− 𝐸𝑚

0
   with    𝑚 ≠ 𝑛 

 

𝐻𝑚𝑛
′ =  𝜑𝑚

0 ∗
𝐻′𝜑𝑛

(0)
 𝑑3𝑟 
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Enforce normalization of the “perturbed” wave functions 
 

 𝜑𝑛
0
+ 𝑎𝑚𝑛

1
𝜑𝑚

0

𝑚

∗

𝜑𝑛
(0)

+ 𝑎𝑚𝑛
(1)
𝜑𝑚
(0)

𝑚

𝑑3𝑟 = 1 

 
 

 𝜑𝑛
0 ∗
𝜑𝑛

0
𝑑3𝑟 +  𝜑𝑛

0 ∗
 𝑎𝑚𝑛

(1)
𝜑𝑚
(0)
𝑑3𝑟

𝑚

 

+  𝑎𝑚𝑛
1
𝜑𝑚

0

𝑚

∗

𝜑𝑛
0
+  𝑎𝑚𝑛

1
𝜑𝑚

0

𝑚

∗

 𝑎𝑚𝑛
(1)
𝜑𝑚
(0)

𝑚

𝑑3𝑟  = 1 

 
We are free to choose norm and phase, so that the wave functions are 

normalized and the inner products with 𝜑𝑛
0

 are real numbers. This implies 

that to first order   𝑎𝑛𝑛
1
= 0. 

 
 [  This means (0)| 0 = 1          (0)| 1 = (1)| 0 = 0  ] 
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Finally, for first order perturbation we have 
 
 

 

𝑛 = 𝜑𝑛
0
+  

𝐻𝑚𝑛
′

𝐸𝑛
0
− 𝐸𝑚

0
𝑚≠𝑛

𝜑𝑛
0

 

 
 

𝐸𝑛 = 𝐸𝑛
(0)

+ 𝐻𝑛𝑛
′  
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In terms of zero-order solutions 

𝑛
(2)

= 𝑎𝑚𝑛
(2)
𝜑𝑚
(0)

𝑚

 

 

𝐸𝑛
(2)

=  𝑎𝑚𝑛
(1)
𝐻𝑚𝑛
′

𝑚≠𝑛

=  
𝐻𝑚𝑛
′ 𝐻𝑛𝑚

′

𝐸𝑛
0
− 𝐸𝑚

0
𝑚≠𝑛

 

 

𝑎𝑚𝑛
(2)

=  
𝐻𝑚𝑘
′ 𝐻𝑘𝑛

′

𝐸𝑛
0
− 𝐸𝑚

0
𝐸𝑛

0
− 𝐸𝑘

0
𝑘≠𝑛

−
𝐻𝑚𝑛
′ 𝐻𝑛𝑛

′

𝐸𝑛
0
− 𝐸𝑚

0
2       {𝑚 ≠ 𝑛} 

 
We can again impose normalization and phase of the wave function at second 

order, which implies (0)| 2 = (2)| 0 = −
1

2
(1)| 1   or 

𝑎𝑚𝑛
(2)

= −
1

2
 𝑎𝑚𝑛

1
2

𝑚≠𝑛

 

2nd  order)    𝑯(0)(2) +𝑯′(1) = 𝐸 0  2 + 𝐸(1)(1) + 𝐸(2)(0) 
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In terms of zero-order solutions, 2nd order perturbation results are 
 

𝑛 = 𝜑𝑛
0
+  

𝐻𝑚𝑛
′

𝐸𝑛
0
− 𝐸𝑚

0
𝑚≠𝑛

𝜑𝑛
0

 

 

+    
𝐻𝑚𝑘
′ 𝐻𝑘𝑛

′

𝐸𝑛
0
− 𝐸𝑚

0
𝐸𝑛

0
− 𝐸𝑘

0
𝑘≠𝑛

−
𝐻𝑚𝑛
′ 𝐻𝑛𝑛

′

𝐸𝑛
0
− 𝐸𝑚

0
2 𝜑𝑚

0
 

𝑚≠𝑛

−
𝐻𝑚𝑛
′ 2

2 𝐸𝑛
0
− 𝐸𝑚

0
2 𝜑𝑛

0

  

 

 

𝐸𝑛 = 𝐸𝑛
(0)

+𝐻𝑛𝑛
′ +  

𝐻𝑛𝑚
′ 2

𝐸𝑛
0
− 𝐸𝑚

0
𝑚≠𝑛

 

 
 



Simple example 
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Starting from an infinite quantum well, apply a potential 
perturbation as in the figure: 
 

𝑉0 

𝐿/2 

𝐻′ = 𝑉0         0 < 𝑥 < 𝐿/2 
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𝐸𝑛
(1)

= 𝐻𝑛𝑛
′ =  𝜑𝑚

0 ∗
𝐻′𝜑𝑛

(0)
 𝑑3𝑟 

With reference 𝑥 = 0  set on the left wall, the wave functions are 

𝜑𝑛
(0)

=
2

𝐿
sin

𝑛𝜋𝑥

𝐿
 𝑑𝑥 

𝐸𝑛
(1)

=
2

𝐿
  𝑉0 sin

2 𝑛𝜋𝑥 𝐿
𝐿/2

0

 

=
2𝑉0
𝐿
  −

1

2
𝑛𝜋
𝑎

cos
𝑛𝜋𝑥

𝐿
sin

𝑛𝜋𝑥

𝐿
+
𝑥

2
0

𝐿/2

=
2𝑉0
𝐿
 
𝐿

4
=  

𝑉0
2

 

 

𝐸𝑛 ≈ 𝐸𝑛
0
+
𝑉0
2

 

 sin2 𝑎𝑥  𝑑𝑥 = −
1

2𝑎
cos 𝑎𝑥 sin 𝑎𝑥 +

𝑥

2
 



Time-dependent perturbation theory 
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Consider a physical system described by a time-independent 
Hamiltonian (assumed to be discrete and non-degenerate) 
 

𝐻0 𝜑𝑛 = 𝐸𝑛𝜑𝑛 
 

Suppose that at 𝑡 = 0  a time-dependent perturbation is 
applied to the system 
 

𝐻 𝑡 ≥ 0 = 𝐻0 +  𝐻′ 
 

where the parameter  ≪ 1. The system is initially in the state 
𝜑𝑖 which is an eigenstate of 𝐻0 with eigenvalue 𝐸𝑖. 
 
We are looking for the first-order approximation of the 
probability 𝑃𝑖𝑗 𝑡   of finding the system in another eigenstate 

𝜑𝑓 of 𝐻0 at time 𝑡. 
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Fermi Golden Rule 

We will use the main results of time-dependent 
perturbation theory to determine the transition 
probability from one state to another, due to 
an external perturbation. 

 

  Absorption Stimulated Emission 
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Initial state 𝑛 = 𝑖 
 

𝑑𝑎𝑚
1
(𝑡)

𝑑𝑡
= −

𝑖


𝐻𝑚𝑖
′ 𝑡  𝑒−𝑖𝜔𝑚𝑖𝑡

= −
𝑖


 𝐻𝑚𝑖

′  𝑒𝑖 𝜔𝑚𝑖−𝜔 𝑡 +𝐻𝑚𝑖
′+  𝑒𝑖 𝜔𝑚𝑖+𝜔 𝑡  

 

Integrate equation between 0 and 𝒕 for a final state 𝑚 = 𝑓 
 

𝑎𝑓
1
𝑡 = −

1


𝐻𝑓𝑖
′ 𝑒

𝑖 𝜔𝑓𝑖−𝜔 𝑡 − 1

𝜔𝑓𝑖 −𝜔
+ 𝐻𝑓𝑖

′+ 𝑒
𝑖 𝜔𝑓𝑖+𝜔 𝑡 − 1

𝜔𝑓𝑖 +𝜔
 

 
The associated probability is 

𝑎𝑓
1
𝑡

2
=

1

2
𝐻𝑓𝑖
′ 𝑒

𝑖 𝜔𝑓𝑖−𝜔 𝑡 − 1

𝜔𝑓𝑖 −𝜔
+ 𝐻𝑓𝑖

′+ 𝑒
𝑖 𝜔𝑓𝑖+𝜔 𝑡 − 1

𝜔𝑓𝑖 +𝜔

2

 

 

𝝎𝒇𝒊 =
𝑬𝒇 − 𝑬𝒊


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𝑎𝑓
1
𝑡

2
=

1

2
𝐻𝑓𝑖
′ 𝑒

𝑖 𝜔𝑓𝑖−𝜔 𝑡 − 1

𝜔𝑓𝑖 −𝜔
+ 𝐻𝑓𝑖

′+ 𝑒
𝑖 𝜔𝑓𝑖+𝜔 𝑡 − 1

𝜔𝑓𝑖 +𝜔

2

 

 

Using  sin 𝑥 =
1

2𝑖
𝑒𝑖𝑥 − 𝑒−𝑖𝑥  

𝑒−𝑖 𝜔𝑓𝑖−𝜔 𝑡 − 1 = 2𝑖 𝑒𝑖
𝜔𝑓𝑖−𝜔 𝑡

2 sin
𝜔𝑓𝑖 − 𝜔 𝑡

2
 

 
 

𝑎𝑓
1
𝑡

2
=
4 𝐻𝑓𝑖

′ 2

2
sin2

𝜔𝑓𝑖 −𝜔 𝑡
2

𝜔𝑓𝑖 −𝜔
2 +

4 𝐻𝑓𝑖
′+ 2

2
sin2

𝜔𝑓𝑖 +𝜔 𝑡
2

𝜔𝑓𝑖 +𝜔
2 +⋯ 

 
 drop cross term 
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𝑎𝑓
1
𝑡

2
=
4 𝐻𝑓𝑖

′ 2

2
sin2

𝜔𝑓𝑖 −𝜔 𝑡
2

𝜔𝑓𝑖 −𝜔
2 +

4 𝐻𝑓𝑖
′+ 2

2
sin2

𝜔𝑓𝑖 +𝜔 𝑡
2

𝜔𝑓𝑖 +𝜔
2  

 
 
For a sufficiently long interaction time 
 

sin2
𝑥
2
𝑡

𝑥2
  →   

𝜋𝑡

2
 𝛿 𝑥  

 
 
 

𝑎𝑓
1
𝑡

2
=
2𝜋𝑡

2
𝐻𝑓𝑖
′ 2

𝛿 𝜔𝑓𝑖 −𝜔 +
2𝜋𝑡

2
𝐻𝑓𝑖
′+ 2

𝛿 𝜔𝑓𝑖 +𝜔  
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Using the property 𝛿 𝜔 = 𝛿 𝜔 /   the transition rate is given by 
 

𝑊𝑖→𝑓 =
𝑑

𝑑𝑡
𝑎𝑓

1
𝑡

2
 

 
 

𝑊𝑖→𝑓 =
2𝜋


𝐻𝑓𝑖
′ 2

𝛿 𝐸𝑓 − 𝐸𝑖 − 𝜔 +
2𝜋


𝐻𝑓𝑖
′+ 2

𝛿 𝐸𝑓 − 𝐸𝑖 + 𝜔  
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
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𝐸𝑓 = 𝐸𝑖 + 𝜔 𝐸𝑓 = 𝐸𝑖 − 𝜔 

absorption of a photon emission of a photon 

energy conserving delta functions 
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Reading Assignments: 
 
Chapter 3 of Chuang’s book 


