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Time-dependent perturbation theory 

2 

Consider a physical system described by a time-independent 
Hamiltonian (assumed to be discrete and non-degenerate) 
 

𝐻0 𝜑𝑛 = 𝐸𝑛𝜑𝑛 
 

Suppose that at 𝑡 = 0  a time-dependent perturbation is 
applied to the system 
 

𝐻 𝑡 ≥ 0 = 𝐻0 +  𝐻′ 
 

where the parameter  ≪ 1. The system is initially in the state 
𝜑𝑖 which is an eigenstate of 𝐻0 with eigenvalue 𝐸𝑖. 
 
We are looking for the first-order approximation of the 
probability 𝑃𝑖𝑗 𝑡   of finding the system in another eigenstate 

𝜑𝑓 of 𝐻0 at time 𝑡. 
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Fermi Golden Rule 

We will use the main results of time-dependent 
perturbation theory to determine the transition 
probability from one state to another, due to 
an external perturbation. 

 

  Absorption Stimulated Emission 
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Initial state 𝑛 = 𝑖 
 

𝑑𝑎𝑚
1
(𝑡)

𝑑𝑡
= −

𝑖


𝐻𝑚𝑖
′ 𝑡  𝑒−𝑖𝜔𝑚𝑖𝑡

= −
𝑖


 𝐻𝑚𝑖

′  𝑒𝑖 𝜔𝑚𝑖−𝜔 𝑡 +𝐻𝑚𝑖
′+  𝑒𝑖 𝜔𝑚𝑖+𝜔 𝑡  

 

Integrate equation between 0 and 𝒕 for a final state 𝑚 = 𝑓 
 

𝑎𝑓
1

𝑡 = −
1


𝐻𝑓𝑖
′ 𝑒

𝑖 𝜔𝑓𝑖−𝜔 𝑡 − 1

𝜔𝑓𝑖 −𝜔
+ 𝐻𝑓𝑖

′+ 𝑒
𝑖 𝜔𝑓𝑖+𝜔 𝑡 − 1

𝜔𝑓𝑖 +𝜔
 

 
The associated probability is 

𝑎𝑓
1

𝑡
2
=

1

2
𝐻𝑓𝑖
′ 𝑒

𝑖 𝜔𝑓𝑖−𝜔 𝑡 − 1

𝜔𝑓𝑖 −𝜔
+ 𝐻𝑓𝑖

′+ 𝑒
𝑖 𝜔𝑓𝑖+𝜔 𝑡 − 1

𝜔𝑓𝑖 +𝜔

2

 

 

𝝎𝒇𝒊 =
𝑬𝒇 − 𝑬𝒊


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𝑎𝑓
1

𝑡
2
=

1

2
𝐻𝑓𝑖
′ 𝑒

𝑖 𝜔𝑓𝑖−𝜔 𝑡 − 1

𝜔𝑓𝑖 −𝜔
+ 𝐻𝑓𝑖

′+ 𝑒
𝑖 𝜔𝑓𝑖+𝜔 𝑡 − 1

𝜔𝑓𝑖 +𝜔

2

 

 

Using  sin 𝑥 =
1

2𝑖
𝑒𝑖𝑥 − 𝑒−𝑖𝑥  

𝑒−𝑖 𝜔𝑓𝑖−𝜔 𝑡 − 1 = 2𝑖 𝑒𝑖
𝜔𝑓𝑖−𝜔 𝑡

2 sin
𝜔𝑓𝑖 − 𝜔 𝑡

2
 

 
 

𝑎𝑓
1

𝑡
2
=
4 𝐻𝑓𝑖

′ 2

2
sin2

𝜔𝑓𝑖 −𝜔 𝑡
2

𝜔𝑓𝑖 −𝜔
2 +

4 𝐻𝑓𝑖
′+ 2

2
sin2

𝜔𝑓𝑖 +𝜔 𝑡
2

𝜔𝑓𝑖 +𝜔
2 +⋯ 

 
 drop cross term 
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𝑎𝑓
1

𝑡
2
=
4 𝐻𝑓𝑖

′ 2

2
sin2

𝜔𝑓𝑖 −𝜔 𝑡
2

𝜔𝑓𝑖 −𝜔
2 +

4 𝐻𝑓𝑖
′+ 2

2
sin2

𝜔𝑓𝑖 +𝜔 𝑡
2

𝜔𝑓𝑖 +𝜔
2  

 
 
For a sufficiently long interaction time 
 

sin2
𝑥
2
𝑡

𝑥2
  →   

𝜋𝑡

2
 𝛿 𝑥  

 
 
 

𝑎𝑓
1

𝑡
2
=
2𝜋𝑡

2
𝐻𝑓𝑖
′ 2

𝛿 𝜔𝑓𝑖 −𝜔 +
2𝜋𝑡

2
𝐻𝑓𝑖
′+ 2

𝛿 𝜔𝑓𝑖 +𝜔  
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𝑎𝑓
1

𝑡
2
=
2𝜋𝑡

2
𝐻𝑓𝑖
′ 2

𝛿 𝜔𝑓𝑖 −𝜔 +
2𝜋𝑡

2
𝐻𝑓𝑖
′+ 2

𝛿 𝜔𝑓𝑖 +𝜔  

 
 

Using the property 𝛿 𝜔 = 𝛿 𝜔 /   the transition rate is given by 
 

𝑊𝑖→𝑓 =
𝑑

𝑑𝑡
𝑎𝑓

1
𝑡

2
 

 
 

𝑊𝑖→𝑓 =
2𝜋


𝐻𝑓𝑖
′ 2

𝛿 𝐸𝑓 − 𝐸𝑖 − 𝜔 +
2𝜋


𝐻𝑓𝑖
′+ 2

𝛿 𝐸𝑓 − 𝐸𝑖 + 𝜔  
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𝑎𝑓
1

𝑡
2
=
2𝜋𝑡

2
𝐻𝑓𝑖
′ 2

𝛿 𝜔𝑓𝑖 −𝜔 +
2𝜋𝑡

2
𝐻𝑓𝑖
′+ 2

𝛿 𝜔𝑓𝑖 +𝜔  

 
 

Using the property 𝛿 𝜔 = 𝛿 𝜔 /   the transition rate is given by 
 

𝑊𝑖→𝑓 =
𝑑

𝑑𝑡
𝑎𝑓

1
𝑡

2
 

 
 

𝑊𝑖→𝑓 =
2𝜋


𝐻𝑓𝑖
′ 2

𝛿 𝐸𝑓 − 𝐸𝑖 − 𝜔 +
2𝜋


𝐻𝑓𝑖
′+ 2

𝛿 𝐸𝑓 − 𝐸𝑖 + 𝜔  

 
 
 

𝐸𝑓 = 𝐸𝑖 + 𝜔 𝐸𝑓 = 𝐸𝑖 − 𝜔 

absorption of a photon emission of a photon 

energy conserving delta functions 
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Lecture 6 Outline 

• Total reflection at a dielectric interface 

• Optical waveguides 

• The symmetric dielectric slab waveguide 

• TE and TM mode behavior 

• Effective index 

 

 

 

15 



16 

Optical waveguides 
 
Short distance (device and circuit level) 
 dielectric slab waveguide 
 
Short and medium distance 
 multimode optical fiber 
 
Long distance 
 monomode optical fiber 
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Reflection at dielectric interface 
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Wave Polarization 



19 

Wave Polarization 
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Angle of refraction 

non-magnetic dielectric medium 

Reflection coefficients for dielectric media 
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Total reflection 
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Total reflection 
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Total reflection – surface wave 
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Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide – Numerical aperture 



28 

Symmetric dielectric slab waveguide – Numerical aperture 
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Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide 



32 

Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide 



34 

Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide   TE modes 
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Symmetric dielectric slab waveguide   TM modes 
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Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide 



41 

Field Solutions – TE modes case 

wave equation 

even 
solutions 

wave vectors 

propagation condition 
along 𝑧 

0 

𝑑

2
 

−
𝑑

2
 

𝑧 

𝑥 
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Field Solutions – TE modes case 

Boundary conditions 
𝑬𝒚  and  𝑯𝒛  continuous at 𝒙 = 𝒅 𝟐   and 𝒙 = −𝒅 𝟐  

0 

𝑑

2
 

−
𝑑

2
 

𝑧 

𝑥 

From Faraday’s law 
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Field Solutions – TE modes case 

wave equation 

odd  
solutions 

wave vectors 

propagation condition 
along 𝑧 

0 

𝑑

2
 

−
𝑑

2
 

𝑧 

𝑥 
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Field Solutions – TE modes case 

Boundary conditions 
𝑬𝒚  and  𝑯𝒛  continuous at 𝒙 = 𝒅 𝟐   and 𝒙 = −𝒅 𝟐  

0 

𝑑

2
 

−
𝑑

2
 

𝑧 

𝑥 
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Graphical solution 

We have 

Coordinate transformation 

R2 

𝑅 = 𝜔
𝑑

2
 𝜇1𝜀1 − 𝜇𝜀 = 𝑘0

𝑑

2
 𝑛1

2 − 𝑛2 

𝑘0 = 𝜔 𝜇𝑜𝜀𝑜 
 

𝑛1 =
𝜇1𝜀1
𝜇𝑜𝜀𝑜

 

 

𝑛 =
𝜇 𝜀

𝜇𝑜𝜀𝑜
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Graphical solution 

odd modes even modes 

Coordinate transformation 
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Cut-off condition 

𝑅 = 𝜔
𝑑

2
𝑖𝑠  𝜇1𝜀1 − 𝜇𝜀 = 𝑘0

𝑑

2
 𝑛1

2 − 𝑛2 = 𝑚
𝜋

2
        

 

[𝑚 = 0, 1, 2, … ] 
 

For single mode operation: 
 

𝑘0
𝑑

2
 𝑛1

2 − 𝑛2 <
𝜋

2
        

 

𝑛1
2 − 𝑛2 <

𝜋 2 2

𝑘0𝑑 2 2
=

0

2𝑑

2
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Graphical solution 
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Graphical solution 
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Low Frequency limits 
 

At cut-off condition  𝑹 = 𝒎𝝅 𝟐     (𝑚 = 0,1,2, …) 

𝑘0
𝑑

2
𝑛1
2 − 𝑛2 = 𝑚

𝜋

2
 

 

𝛼 = 0 
 

𝑘𝑥
𝑑

2
= 𝑚

𝜋

2
 

𝑘𝑧 = 𝜔 𝜇𝜀    (since 𝛼 = 0) 
At low frequency the propagation constant approaches that of the cladding 
medium outside the waveguide  
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High Frequency limit 

At high frequency 𝑹 → ∞ 

𝑘𝑥
𝑑

2
→ (𝑚 + 1)

𝜋

2
 

 

𝑘𝑧 → 𝜔 𝜇1𝜀1 = 𝜔
𝑛1
𝑐

 

At high frequency the propagation constant approaches that of the core 
medium inside the waveguide.  There is very little power in the cladding.  
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LF limit 

HF limit 

HF limit 

LF limit 
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Effective index for the guided modes 

𝑛𝑒𝑓𝑓 =
𝑘𝑧
𝑘0

 
 

𝑛𝑒𝑓𝑓 =
2𝜋

𝑧
 
0
2𝜋

=
𝑓

𝑣𝑝𝑧

𝑐

𝑓
=

𝑐

𝑣𝑝𝑧
 

𝑛𝑒𝑓𝑓 = 𝑛1 sin 𝜃 

𝑛 ≤ 𝑛𝑒𝑓𝑓 ≤ 𝑛1 
𝑧 =

0

𝑛𝑒𝑓𝑓
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Normalized frequency 

𝑉 = 𝑘0𝑑 𝑛1
2 − 𝑛2 

 

𝑉 =
2𝜋

0
 𝑑 𝑛1

2 − 𝑛2 = 𝑓
2𝜋

𝑐
𝑑 𝑛1

2 − 𝑛2 

contains all the information on wave 
guide geometry and materials 
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Normalized propagation parameter 
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Validity of refraction index model 

The theoretical analysis provides always good insight 
but it has assumed  that the refractive indices are 
independent of frequency.    
 
This is true only in ideal dielectrics.  In real media, 
particularly in semiconductors, this is generally not 
true. 
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Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide 
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Symmetric dielectric slab waveguide – Field Expressions 
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Symmetric dielectric slab waveguide – Field Expressions 
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Symmetric dielectric slab waveguide – Field Expressions 
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Symmetric dielectric slab waveguide – Field Expressions 
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Symmetric dielectric slab waveguide – Field Expressions 
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Symmetric dielectric slab waveguide – Field Expressions 
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Reading Assignments: 
 
Chapter 7 of Chuang’s book 
 
Chapter 7 of Coldren & Corzine’s book (supplement) 


