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Lecture 8 Outline

Electron-Photon interaction
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The Electron-Photon Interaction Hamiltonian



Representative crystal momentum for electron in a crystal

At o
p=hk~—. With a,~554
m X 1.054 x 10734

~ = 6.02 X 1072%° J-s/m
p 5T % 10-10 6.02 X 10

Momentum of a photon at 1um wavelength

h2m  2m x 1.054 x 10734

= 10 =6.6x107%% J-s/m

hkopt ~

In free space (Compton effect)
scattered photon with lower

energy and momentum

incoming photon %

e accelerated particle



Energy in light wave

— 2
Uwave = €£

There is no obvious dependence on frequency

Uphotons =N hw

1

Number of
photons/m3

There is an obvious dependence on frequency
Since we must have

Uwave = Uphotons

the number of photons per unit volume N must be proportional to E? with
constant of proportionality which depends on the wave frequency



Optical Transitions Using Fermi Golden Rule

Hamiltonian describing the electron-photon interaction in a
semiconductor

1

H=——(p-eA) +V(r)

2m, A A A T

periodic crystal potential
EM vector potential

electron charge

momentum variable



Expansion of the Hamiltonian

1 2
Hamiltonian for interaction with light: H = 5 (p—eA) +V(r)
2m,
Expand the squared term
p’ e " A’
H = +V(r)- (prA+Aep)+
2m, ‘ 2m, 2m,
|\ . 7
~~ ~"
H, H'
Unperturbed Perturbed
Hamiltonian Hamiltonian
Simplifications:
2 42

* In practical cases |eA| < |p| so the term ° is neglected

Zmo
* Choice of Coulomb gaugeV-A =0 suchthat p-A=A"p

{.J'

:> H :_HI

A-p

o




Expansion of the Hamiltonian

1 )
Hamiltonian for interaction with light: H = 2—(p —eA) +V(r)
2,

Expand the squared term

p’ e " A’
H = +V(r)- (prA+Aep)+
2m, ‘ 2m, 2m,
(. _J \_ _J
Y e
H, H'
Unperturbed Perturbed
Hamiltonian Hamiltonian

(54~ A5) 5@ =+ (AVf+ [V-4-Avf)=25v.a

* Choice of Coulomb gaugeV-A =0 suchthat p-A=A"p

::> H :_m A-p




A 1s the vector potential

Coulomb Gauge ¢ A = : ‘
& VeA=0 ¢ 1s the scalar potential

Lorenz Gauge VeA= _Jug%

ot

The number of possible gauges is infinite. We are free to some
extent to choose the gauge which simplifies solution of a
problem, as long as the underlining physics is not affected.

Coulomb gauge is often used when no sources are present.

The Lorenz gauge is necessary when the action of “retarded
potentials” has to be considered.



Optical Fields

We define the perturbing field through the magnetic vector potential

b - 1) = o By 3 Ao i
2 2

op

A=°cA cc:}s(k

unit vector (direction of Electric Field with assumption below)

Electric Field (V/m)

A vanishes for
E(r.1)= _Eh optical field

JA . | |
= ———=—¢eWmA, 5111(1{0'] °r— mr]

—

ot

Magnetic Field (A/m) Assumption

1 l - " f | !: Ii‘?
H(I'J)Z—VXAZ——I{EPXE-A” 5111(1{“1]-1'—(01) H=t
e U ‘ | )




Poynting Vector
OV S
P(r.)=E@.0xHr.0= k k,—2sin’(K,,*r—or)
U

direction of power flow

Time Average Poynting Flux

; .9 1
‘(P(l‘ ﬂ)‘ — mAn . We have used ‘<s111*(.r)>‘ =
’ 2‘“ op 5
v 1 1
2 2nf o y,_gr_a)\/g_wnr o o = .y
k(;p_ A - V;?h - C - C - C \fzuogo 626‘0 J{ J[::u
2 42
n.Ccem A,

(P(r.n)| =

P



Interaction Hamiltonian

Substitute the assumed magnetic vector potential into the expanded Hamiltonian

A=eA CGS( Kk,

P

-r—mr):@i

[ ‘ll
H":— A-lj
HI”
iK_ -1 ik 1
eAe ™ . » eAe ™"
H;(I‘J)__ 0 (E"p)f iwr 0
Zrnﬂ Zmﬂ
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Interaction Hamiltonian

_ iKgper . —iKqper
HI(I'J) — _ EA:;E (E.p)f—fmr _ GA:;E E' )€+Em‘f
| 2m, | 2m,
g _J G _J
Y Y
H'(r) H" (r)

H’(I‘, t) _ H/(r)e—iwt 1 H/+(r)e+ia)t

, eAe ™
[ H'(r)=- (¢+p)
2m,
,t {"A)E?_{kopr ~ . . . . /
X H (I‘):— ‘,} (e-p) Hermitian adjoint (conjugate) of H' (1)
Zm

Hermitian Conjugate Operator: {H +tp‘ W ) = <fP‘ Hy >




Transition Rate due to

Electron-Photon Interaction

Absorption

9 final

state

initial

O state

Emission
Q initial
state
S\ ho
final
6 state



Transition Rate: Absorption

Transition Rate for Photon Absorption (single electron)

_ZTE(MH (v)|a) 8(E, - E, - he)

abs

Total Upward Transition Rate per unit volume (s cm3)

u%kz;m;# T) I XL 8 (5, -, ~10) 1, (1- 1)

probability of occupation

,=(b|H(r)|a) I‘P H'(r)¥,(r)d’r
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Transition Rate: Emission

Transition Rate for Photon Emission (single electron)

=l 1 (1)) 8(E, = E, + 100

Total Downward Transition Rate per unit volume (s cm3)

HI——RZAZ;?WH?(I—T) ZZ sl

probability of occupation

S(E,—E,+hw)f,(1- 1)

H”—<f,,.f|H""+ |b>:J“P ‘Pb (r)djr

ab
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Net Upward Transition

Using

5(-x)=6(x) — 8(E,—E,-hw)=6(-E,+E, +ho)

H!

ba

. r+
_‘Hm’)

R= —ZZ'E

Net Absorption Rate

f:-ﬂ

R_Ra—:-b_R

——ZZ
——ZZ Al o

“S(E,—E,—ho)[(f.- £.5,)- (£,

i 21
R—sza‘%?h(

ba

“5(E,~E,~ho)(f,- f,)

E _Ea_hw).]i:(l_iﬂﬂ)

(E,—E,+ho)f,(1- 1)

-5,5)]
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Optical Absorption Coefficient



Absorption Coefficient

Absorption Coefficient [cm™] = fraction of photons absorbed per unit distance

Number of photons absorbed per second per unit volume

a= — :
Number of photons injected per second per unit area

R

1.0 cm?

|

optical intensity  [(P)| :
energy per photon  fiw :
|

|

1.0 cm

We have already derived what we need for the absorption coefficient.
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Absorption Coefficient

optical intensity  [(P)| nrceosz%

energy per photon T hw 2 hw

(E,—E,—no)(f,-1,)

Lo zz LA
)"

~(P/ho) [n ce,m*A’
2

We found earlier

eA ™"
1(5)=- 2" )

Long wavelength (dipole) approximation: wavelength of light is large compared to
the spatial distance between energy levels involved on the transition

ik _ o1
Ar)=Ae ™™ = A

substitute into a
(J * p.’m

H =--° A-(!J‘p‘ff'): ed,

ba
m, 2m, .




Absorption Coefficient

az(ncgwA ] ;; (21?1 J: .

:5(Eb _Ea —hﬂ))(]; _ﬁ?)

e[ 6(E,—E,—ho)(f, - £,)
K,k
with c =—"°
n.CEeMyM

The intensity factors A% cancel out. The absorption

coefficient is independent of optical intensity in linear
regime.

Recall also: ‘ V‘.—:? J‘P ‘P(r)

] s 21



The Hamiltonian can also be written in terms of the electric
dipole moment which has form W0 = —eér

We had H] =—--——A«(b|pla)

m_

= (lpla) = (83 V]a)= [, (r) V¥, (1)

m,

Hy = unperturbed
Hamiltonian

Using the property p= %Er— - (rH -H, )
Hj, = —A« a)
ih
e\l — L
- BB o) =,
i
E=imA H,(a)=E

E-E =hw (D|H, =

u“b(f — €<b‘ I" a> = €r.r_‘::(f

22




With H;, :;;A'<b|rHO—HOr
ih

a)

_ e(E-E)

SRS S —— A«(b|r|la)=—p,, +E
in

The absorption coefficient becomes

o(hoy) =222 DA

n.cg,

€ uzm E - L, _ha))(f fb)

In practice, scattering causes linewidth broadening. The delta
function can be replaced by a Lorentzian function



Real and Imaginary Parts of the
Permittivity Function



Power decay

The absorption coefficient comes from the wave vector in the
expression for power

¥ = Re(y) + i Imy}

_ 2m  2if _

P =—=—"=w/ule +isy)
7L vph

P(z) = P, e?7?

— PO o 2iRe{y}z+2ili Im{y}]|z

— PO e [2iRe{y}z—2Im{y}z]

—> |P(2)| = |Pole™**



Absorption Coefficient and Permittivity

The absorption coefficient and the permittivity are related by

a:Zhnm\f;J(el+fs:)Tzlm{ﬂnr(lﬂ €, ﬂzﬂé‘:

C 281 nce,

(Factor of 2 because «a refers to absorption of optical intensity)

Rearranging:
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Absorption Coefficient and Permittivity

The real part of the permittivity can be obtained from the
imaginary part using Kramers-Kronig relation (in Appendix 5A)

daw’

 (0)=c, + 2 P[22

NG

denotes the Principal Value of the integral

2f 2 -/,
c(0)=5,+ 22 S, U=

e V< (£,~E,) (E,~E,) ~(ho)’ |

Note: for a semiconductor, E, and E}, are obtained from the band structure

E,=E(k,) and E, = E(k,)

27



Interband Absorption and Gain of Bulk Semiconductors

We found the Net Upward Transition

R= Ra%b b%cf - _22 ‘H!'Jff‘ 5(Eb _ch _ha))(ﬁf _fb)

H, = <b| _i‘:{fr).p‘a>

How do we calculate the interband optical matrix element?

28



Evaluation of the Interband Optical Matrix Element

Vector Potential of the optical field

, . Cf :
A (I‘) =A™ = 7‘40{?&"}’ )

Interband absorption involves two states in the band structure

u (r)e™" u (r)e" "
Wr.r = — :> ll/f} = —=
\ Vol Vol
valence band E conduction band £ ,

u (r)and u_(r) are the peniodic parts of the Bloch functions

29



Evaluation of the Interband Optical Matrix Element

In general from H, = <b|_‘A p‘ > and A(r)=A€fkop-r=f’fjo ko
m, b
,. ed ™ ed ) a
ba :< ‘_ ;?ﬂ (e.p)‘a> — _2”} €'<b @knp p)a>
w: l‘[/b
! |
~ e k\ f Ak .
ed . cu(r)e ™" i . u (r)e™™
Hj: —_— 6._[ C e op _fv dar
ba 2m JVol ( i ) ,Vof
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Evaluation of the Interband Optical Matrix Element

ik_er
U (r)e STk u (rye™ .
H = ée [ e (—inV )= dr
ba
2m Vol Vol
' EBA A % —ile . ik -r . e . ile . d3r
H =——2¢.-|u (r)e ™ & " | (=ih Vu,(r))e™" +hk u (r)e™" | —
ha Zmn J. f,( ) |:( 1( )) v 1-( ) J V
u (v) (=ih Vu,(r)) |
> periodic and fast varying over a unit cell
() u(r)
\
e—r’l-;:.-r
> slowly varying over a unit cell
E.fklnr
Y

The integral can be separated into the product of two integrals, one over the unit
cell for the fast varying part and one over the volume for the slowly varying part

31




Evaluation of the Interband Optical Matrix Element

3
H,, = I T(r) e’ e [(—ih Vuv(r))e‘fk"'r +hk u (r)e” dr

’ 2mn V

orthogonality of

d dS wave functions
k. +k. +k
= _[ () (=ih Vu,(r)) —I ek LD
2???0 Q) V 4
over unit cell Q2 O "

Y

eAﬂ\_x / g

Lo(k, k, + kﬂp) momentum conservation

2m,

d3

with Py =4 (0) (=R Vi, ()~

Q 32



k-selection Rule

ed E
H = eep O
a cv k_ Kk, . "
Zm h22
E(k)=E, + —
& 2m,
Eg kop = kc, kv
~ vertical transition
energies are measured
from top of valence band '_ _ L
""" - Wk
E, =~
Nlh
hzkz thZ thQ ) ) 0
E(‘_EV:EQ‘-I_ *+ *:Eg_l_ * with — =c=+ o
m, 2m m.m, m, 3

2m



Optical Absorption Spectrum

H,| 8(E,~E,~ho)(f,- 1,)

e aggor
oc(hco)— ]V%‘%‘h

nce A
2

ho 2 2r|—eA . 2
2

e’ 2

_ =¥ Yeen.) 6, 8(E.~E,~no)(f,- 1)

2
ncem -V %
7 [} [} v c

= C 3 Sfew [3(E £, o) /.00~ £.0)

k represents both k; and k,
They are equal by the k-selection rule

34



Optical Absorption Spectrum

Starting with the general expression
2 . 2
o(how)= COVZ eop.| S(E.~E, —hw)(f.—- 1)
k

we assume an undoped bulk material in thermal equilibrium,
with valence band fully occupied and conduction band
completely empty

Fe = F, = EF fo=1 fe=0
(ha) Sle p,:1 Zd k [ };nﬁr ha)}
1 1 |
=—

35



Optical Absorption Spectrum

The integral can solved analytically arriving at the bulk absorption
coefficient

o, (hw)=C

0
~ V"~ ~ Y
momentum matrix joint (reduced) density of states
+ (ho) element
oto(he
i 5 3/2
n_ 1/2
pr(hﬂ)—Eg): . '7] (ha)_Eg)
2\ h”
| | |
=—+

- 1o

36




Optical Gain Spectra (with carriers)

Under current injection or optical pumping, we have quasi-Fermi
levels F. and E,

o2 . 2
o(hw)= ('072 éop, | 8(E —E,—ho)(f.(k)-f.(k))
A,_
~ | |
j:,(k) o l-l—e(E"(k)_F")/kT f;(k): 1_|_e(Ee(k)—Fc)/kT

We carry out the integral as before

~

a(hw)=C,lé-p.,

2 2d2k thz y -
I(Z;{)S 5[155; + om —hﬂ)J [fr(k)_fc.(k)]

37



a(ho) =

Optical Gain Spectra (with carriers)

2“ 5| E+" ho | 1100 - 1£.0)]
) 2m,

o(hw) = o, (ho)( f.(k,) - f.(k,))

38



Optical Gain Spectra (with carriers)
o(hw) = o (ho)( £, (k,) - £.(k,))
We have Gain (negative absorption) when

(ko) < [ (kg)

Y

E <ho<F —-F,

g

F — F > E — E — hCO population inversion condition
¢ v ¢ v (Bernard-Duraffourg condition)

39



Optical Gain Spectra (with carriers)

The magnitude of the loss (or gain) depends on
wavelength. If the separation of the quasi-Fermi
levels is greater than the band gap, there is gain.

 Photons with energies greater than the bandgap but
less than the energy separation of the quasi-Fermi
levels will experience gain

 Photons with energies greater than the separation of
the quasi-Fermi levels will experience loss

Gain condition FE — FV > ho > EC — EV

Eg 40



Optical Gain Spectra (with carriers)

(a) (b)
E )

fAE)

0.5 1.0

S N FV - -
BN \\ §N /\,(B)
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Optical Gain Spectra (with carriers)

(c) otp(hw)
ahe) A A~ a(hw)
+1.0 g/ S B
E
£
- 1 (1)
F.—F,
A1 a(hw) < 0

1.0 pm—t" |
|




Reading Assighments:

Section 9.3 of Chuang’s book



