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Lecture 8 Outline 

• Electron-Photon interaction 

• Optical transitions using Fermi Golden Rule 

• Optical Absorption 

• Optical Gain 
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The Electron-Photon Interaction Hamiltonian 
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Representative crystal momentum for electron in a crystal 

𝐩 = 𝑘 ≈
𝜋

𝑎
. With  𝑎𝑜 ≈ 5.5 Å,   

𝐩 ≈
𝜋 × 1.054 × 10−34

5.5 × 10−10
= 6.02 × 10−25 J  s/m 

𝑘𝑜𝑝𝑡 ≈
2𝜋


≈

2𝜋 × 1.054 × 10−34

10−6
= 6.6 × 10−28 J  s/m 

Momentum of a photon at 1m wavelength 

In free space (Compton effect) 

incoming photon 

scattered photon with lower 
energy and momentum 

accelerated particle 
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Energy in light wave 

𝐔𝐰𝐚𝐯𝐞 = 𝜀𝐸2 
There is no obvious dependence on frequency 

Number of 
photons/m3 

𝐔𝐩𝐡𝐨𝐭𝐨𝐧𝐬 = 𝑁 ∙ 𝜔 

There is an obvious dependence on frequency 

Since we must have 

𝐔𝐰𝐚𝐯𝐞 = 𝐔𝐩𝐡𝐨𝐭𝐨𝐧𝐬 

the number of photons per unit volume 𝑁 must be proportional to 𝐸2 with 
constant of proportionality which depends on the wave frequency 
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Optical Transitions Using Fermi Golden Rule 

Hamiltonian describing the electron-photon interaction in a 
semiconductor 

momentum variable 

electron charge 

EM vector potential 
periodic crystal  potential 
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Expansion of the Hamiltonian 

Hamiltonian for interaction with light: 

Expand the squared term 

𝐻0 𝐻′ 
Unperturbed 
Hamiltonian 

Perturbed 
Hamiltonian 

Simplifications: 

• In practical cases 𝑒𝑨 ≪ 𝐩  so the term 
𝑒2𝐴2

2𝑚0
  is neglected 

• Choice of Coulomb gauge 𝛻 ∙ 𝐀 = 0  such that  𝐩 ∙ 𝐀 = 𝐀 ∙ 𝐩 
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Expansion of the Hamiltonian 
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Coulomb Gauge 

Lorenz Gauge 

The number of possible gauges is infinite.  We are free to some 
extent to choose the gauge which simplifies solution of a 
problem, as long as the underlining physics is not affected. 
 
Coulomb gauge is often used when no sources are present.   
 
The Lorenz gauge is necessary when the action of “retarded 
potentials” has to be considered. 
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Optical Fields 

unit vector (direction of Electric Field with assumption below) 

We define the perturbing field through the magnetic vector potential   

vanishes for  
optical field 

Assumption 

Electric Field (V/m) 

Magnetic Field (A/m) 
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Poynting Vector  

direction of power flow 

We have used 

Time Average Poynting Flux 
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Interaction Hamiltonian 

Substitute the assumed magnetic vector potential into the expanded Hamiltonian 
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Interaction Hamiltonian 

𝐻′(𝐫, 𝑡) = 𝐻′ 𝐫 𝑒−𝑖𝜔𝑡 + 𝐻′+ 𝐫 𝑒+𝑖𝜔𝑡 

 Hermitian adjoint (conjugate) of 𝐻′(𝐫) 



Transition Rate due to  

Electron-Photon Interaction 

Emission Absorption 

𝐸𝑎 𝐸𝑎 

𝐸𝑏 𝐸𝑏 

initial 
state 

initial 
state 

final 
state 

final 
state 



15 

Transition Rate: Absorption 

 Transition Rate for Photon Absorption (single electron) 

 Total Upward Transition Rate per unit volume (s-1 cm-3) 

probability of occupation 
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Transition Rate: Emission 

 Transition Rate for Photon Emission (single electron) 

 Total Downward Transition Rate per unit volume (s-1 cm-3) 

probability of occupation 
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Net Absorption Rate 

Net Upward Transition  

Using 



Optical Absorption Coefficient 
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Absorption Coefficient 

Absorption Coefficient [cm-1] = fraction of photons absorbed per unit distance 

We have already derived what we need for the absorption coefficient. 

𝛼 =
Number of photons absorbed per second per unit volume

Number of photons injected per second per unit area
 

1.0 cm 

1.0 cm2 

optical intensity

energy per photon
=

𝑃

𝜔
 

𝑅 
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Absorption Coefficient 

We found earlier 

optical intensity

energy per photon
=

𝑃

𝜔
=

𝑛𝑟𝑐𝜀0𝜔
2𝐴0

2

2  𝜔
 

Long wavelength (dipole) approximation: wavelength of light is large compared to 
the spatial distance between energy levels involved on the transition 

substitute into 𝜶 
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Absorption Coefficient 

with 

The intensity factors 𝐴0
2  cancel out.   The absorption 

coefficient is independent of optical intensity in linear 
regime. 
 

Recall also: 
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We had  

The Hamiltonian can also be written in terms of the electric 
dipole moment which has form 

Using the property 𝐻0 = unperturbed 
Hamiltonian 
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The absorption coefficient becomes 

With 

In practice, scattering causes linewidth broadening.  The delta 
function can be replaced by a Lorentzian function   



Real and Imaginary Parts of the 
Permittivity Function 
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The absorption coefficient comes from the wave vector in the 
expression for power 

Power decay 

𝛾 = 𝐑𝐞 𝛾 + 𝑖 𝐈𝐦 𝛾  
 

𝛾 =
2𝜋

 
=

2𝜋𝑓

𝑣𝑝ℎ
= 𝜔 𝜇 𝜀1 + 𝑖𝜀2  

 

𝑃 𝑧 = 𝑃0 𝑒
2 𝑖𝛾 𝑧 

 

= 𝑃0𝑒
2𝑖𝐑𝐞 𝛾 𝑧+2𝑖 𝑖 𝐈𝐦 𝛾 𝑧 

 

= 𝑃0𝑒
[2𝑖𝐑𝐞 𝛾 𝑧−2𝐈𝐦 𝛾 𝑧] 

 

𝑃(𝑧) = 𝑃0 𝑒−𝛼𝑧 
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The absorption coefficient and the permittivity are related by 

Absorption Coefficient and Permittivity 

(Factor of 2 because 𝛼 refers to absorption of optical intensity) 

Rearranging: 



27 

The real part of the permittivity can be obtained from the 
imaginary part using Kramers-Kronig relation (in Appendix 5A) 

Absorption Coefficient and Permittivity 

Note: for a semiconductor, 𝐸𝑎 and 𝐸𝑏 are obtained from the band structure  

denotes the Principal Value of the integral 
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We found the Net Upward Transition 

Interband Absorption and Gain of Bulk Semiconductors 

How do we calculate the interband optical matrix element? 
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Vector Potential of the optical field 

Evaluation of the Interband Optical Matrix Element 

Interband absorption involves two states in the band structure 
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In general from                                          and 

Evaluation of the Interband Optical Matrix Element 
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Evaluation of the Interband Optical Matrix Element 

periodic and fast varying over a unit cell 

slowly varying over a unit cell 

The integral can be separated into the product of two integrals, one over the unit 
cell for the fast varying part and one over the volume for the slowly varying part 
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Evaluation of the Interband Optical Matrix Element 

orthogonality of 
wave functions 

over unit cell  

momentum conservation 

with 
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k-selection Rule 

with 

 vertical transition 
energies are measured 
from top of valence band 
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Optical Absorption Spectrum 
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Optical Absorption Spectrum 

Starting with the general expression 

we assume an undoped bulk material in thermal equilibrium, 
with valence band fully occupied and conduction band 
completely empty 

𝐹𝑐 = 𝐹𝑣 = 𝐸𝐹 𝑓𝑣 = 1 𝑓𝑐 = 0 
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Optical Absorption Spectrum 

The integral can solved analytically arriving at the bulk absorption 
coefficient 
 

joint (reduced) density of states momentum matrix 
element 
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Optical Gain Spectra (with carriers) 

Under current injection or optical pumping, we have quasi-Fermi 
levels 𝐹𝑐 and 𝐹𝑣 

We carry out the integral as before 
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Optical Gain Spectra (with carriers) 
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Optical Gain Spectra (with carriers) 

We have Gain (negative absorption) when 

population inversion condition 
(Bernard-Duraffourg condition) 
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Optical Gain Spectra (with carriers) 

The magnitude of the loss (or gain) depends on 
wavelength.  If the separation of the quasi-Fermi 
levels is greater than the band gap, there is gain. 
 

• Photons with energies greater than the bandgap but 
less than the energy separation of the quasi-Fermi 
levels will experience gain 

• Photons with energies greater than the separation of 
the quasi-Fermi levels will experience loss 

Gain condition 

𝐸𝑔 
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Optical Gain Spectra (with carriers) 
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Optical Gain Spectra (with carriers) 
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Reading Assignments: 
 

Section 9.3 of Chuang’s book 
 
 
 


