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Lecture 9 Outline 

• Optical Absorption 

• Optical Gain 
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Quick Recap – Absorption Coefficient 

optical intensity

energy per photon
=

𝑃

𝜔
=
𝑛𝑟𝑐휀0𝜔

2𝐴0
2
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Net Upward Transition 

Perturbation Hamiltonian Long  (dipole) Approximation 
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Expressed in terms of the electric dipole moment 

Quick Recap – Absorption Coefficient 
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Then we have asked ourselves how to calculate the optical 
matrix element we have in the net upward transition 

Vector potential for the optical field  valence band state conduction  band state 
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Then we have asked ourselves how to calculate the optical 
matrix element we have in the net upward transition 

Vector potential for the optical field  valence band state conduction  band state 

slowly varying 
over a unit cell 

fast varying 
over a unit cell 
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We separated the integral into the product of two integrals 

 vertical transition 
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Optical Absorption Spectrum 
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Optical Absorption Spectrum 

Starting with the general expression 

we assume an undoped bulk material in thermal equilibrium, 
with valence band fully occupied and conduction band 
completely empty 

𝐹𝑐 = 𝐹𝑣 = 𝐸𝐹 𝑓𝑣 = 1 𝑓𝑐 = 0 
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Optical Absorption Spectrum 

The integral can solved analytically arriving at the bulk absorption 
coefficient 
 

joint (reduced) density of states momentum matrix 
element 
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Optical Gain Spectra (with carriers) 

Under current injection or optical pumping, we have quasi-Fermi 
levels 𝐹𝑐  and 𝐹𝑣  

We carry out the integral as before 
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Optical Gain Spectra (with carriers) 
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Optical Gain Spectra (with carriers) 

We have Gain (negative absorption) when 

population inversion condition 
(Bernard-Duraffourg condition) 
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Optical Gain Spectra (with carriers) 

The magnitude of the loss (or gain) depends on 
wavelength.  If the separation of the quasi-Fermi 
levels is greater than the band gap, there is gain. 
 

• Photons with energies greater than the bandgap but 
less than the energy separation of the quasi-Fermi 
levels will experience gain 

• Photons with energies greater than the separation of 
the quasi-Fermi levels will experience loss 

Gain condition 

𝐸𝑔 
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Optical Gain Spectra (with carriers) 



16 

Optical Gain Spectra (with carriers) 
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Interband Absorption and Gain in 
Quantum Well 
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Simple square well potential (infinite barrier) 

Consider a 1D well in 3D space quantized along z- axis 

𝐸1… 𝐸𝑁 …
 

well width area in (x,y) plane 

plane wave 
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2-band model – we need to add the valence band 

𝐸𝐶  

𝐸𝑉 

𝑛 = 1 

𝑚 = 1 

𝑚 = 2 

𝐸𝐺 

heavy holes  
or light holes 

𝐤𝑡
′= transverse momentum for electrons 

 
𝐤𝑡= transverse momentum for holes 

periodic Bloch wave 

plane wave on (x,y) plane 

quantized envelope wavefunction 
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Interband Absorption and Gain in Quantum Well 

(We neglect here exciton interactions between electrons and holes) 
 

Starting with the general expression for the absorption coefficient 

𝐩𝑏𝑎 = 𝑏 𝐩 𝑎 =  𝑏
∗  


𝑖
𝛻𝑎  𝑑

3𝐫 

=  𝑢𝑐
∗ 𝐫

𝑒−𝑖𝐤𝑡
′ ∙𝐫

𝐴
𝑛
∗ (𝑧)



𝑖
𝛻 𝑢𝑣 𝐫

𝑒𝑖𝐤𝑡∙𝐫

𝐴
𝑔𝑚 𝑧  𝑑3𝐫 
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𝐩𝑏𝑎 = 𝑏 𝐩 𝑎 =  𝑏
∗  


𝑖
𝛻𝑎 𝑑

3𝐫 

=  𝑢𝑐
∗ 𝐫

𝑒−𝑖𝐤𝑡
′∙𝐫

𝐴
𝑛
∗ (𝑧)



𝑖
𝛻 𝑢𝑣 𝐫

𝑒𝑖𝐤𝑡∙𝐫

𝐴
𝑔𝑚 𝑧  𝑑3𝐫 

 

=


𝑖𝐴
 𝑢𝑐

∗ 𝐫 𝑒−𝑖𝐤𝑡
′ ∙𝐫𝑛

∗ (𝑧)  𝑒𝑖𝐤𝑡∙𝐫𝑔𝑚 𝑧 𝛻𝑢𝑣 𝐫 + 𝑢𝑣 𝐫 𝑔𝑚 𝑧 𝛻𝑒
𝑖𝐤𝑡∙𝐫

+ 𝑢𝑣 𝐫 𝑒
𝑖𝐤𝑡∙𝐫𝛻𝑔𝑚 𝑧  𝑑

3𝐫 
 

=


𝑖𝐴
 𝑢𝑐

∗ 𝐫 𝛻𝑢𝑣 𝐫 𝑒
−𝑖𝐤𝑡

′ ∙𝐫𝑒𝑖𝐤𝑡∙𝐫𝑛
∗ (𝑧) 𝑔𝑚 𝑧 + ⋯ 

 
≈ 𝑢𝑐 𝐩 𝑢𝑣   𝛿𝐤𝑡,𝐤𝑡′   𝑰ℎ𝑚

𝑒𝑛  
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𝐩𝑏𝑎 ≈ 𝑢𝑐 𝐩 𝑢𝑣   𝛿𝐤𝑡,𝐤𝑡′   𝑰ℎ𝑚
𝑒𝑛  

overlap integral of quantized 
wavefunctions in well 

k-selection rule   →  𝐤𝑡 = 𝐤𝑡
′  

conservation of transverse 
momentum from exponentials 

electron state 𝑛 

hole state 𝑚 

𝑰ℎ𝑚
𝑒𝑛 =  𝑛

∗ 𝑧  𝑔𝑚 𝑧  𝑑𝑧

∞

−∞

 

overlap integral 

𝐩𝑐𝑣  
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Transition energies (all are relative to top of valence band) 

𝐸𝐶  

𝐸𝑉  

𝑛 = 1 

𝑚 = 1 

𝑚 = 2 

𝐸𝐺 

𝐸 = 0 

Energy level of hole state 
(NOTE: it’s negative) 

Energy level of electron state 
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Transition energies (all are relative to top of valence band) 

𝐸𝐶  

𝐸𝑉  

𝑛 = 1 

𝑚 = 1 

𝑚 = 2 

𝐸𝐺 

𝐸 = 0 
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Absorption expression for quantum well case 

• Summations over k𝑎 and k𝑏  become summations over k𝑡  and k𝑡
′  

 
• The k-selection rule establishes k𝑡 = k𝑡

′  so the sum becomes a 
sum over k𝑡  
 

• We need to sum also over 𝑚 and 𝑛  
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Joint Density of States 

For an unpumped semiconductor in thermal equilibrium  𝑓𝑣
𝑚 = 1 𝑓𝑐

𝑛 = 0 
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Reading Assignments: 
 

Sections 9.3 and 9.4 of Chuang’s book 
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Transition involving one single electron 
and hole subband pair 

Transition involving two electron and 
two hole subbands 
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Zielinski et al, IEEE J. Quantum Electronics, QE-23, p.969 (1987). 



Quantum Dots 
Ideal quantum dot assumptions 

• Uniform dot size 

• Uniform distribution 
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Ideal Quantum Dot – Wave functions and Energies 

Dot Density 

Fill Factor 

Dot Size Total Volume of Single Dot 
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Conduction Band – Wave functions and Energies 

Wave Functions (Assume infinite barrier for simplicity) 

Energy eigenvalues 

Electron Density 
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Valence Band – Wave functions and Energies 

Wave Functions (Assume infinite barrier for simplicity) 

Energy eigenvalues 

Hole Density 
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Interband Absorption Spectrum 

General expression 

Quantization in all dimensions    sum over 𝒎,𝒏, 𝒍 

with Interband Transition Energies 
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Absorption – Homogeneous Broadening 

In case of no carrier injection, we can approximate  𝑓𝑣 = 1 𝑓𝑐 = 0 

For homogeneous broadening, the delta function can be replaced by a 
Lorentzian 

With carrier injection 
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Absorption – Inhomogeneous Broadening 

For unifom dots we had: 

In realistic case we will have variations of quantum dot size.  Dot energy 
level become a Gaussian distribution with  

carrier density 
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Examples = Homogeneous Broadening 

FWHM = 30 meV 
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Examples = Homogeneous +Inhomogeneous Broadening 
FWHM = 30 meV FWHM = 50 meV 
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Examples = Homogeneous +Inhomogeneous Broadening 
FWHM = 30 meV FWHM = 50 meV 



Quantum Wires 
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Ideal Quantum Wire – Wave functions and Energies 

Areal Density in 𝒙 − 𝒚  cross-section 

Fill Factor Wire Length 

Wave Functions 

Energy eigenvalues 
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Density of States 

Electron Density 

Density of state in a 1-D wire quantized along the 𝒙 and 𝒚 directions 
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Absorption coefficient 

joint density of states 



Intersubband Absorption 
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Transition between ground state and first excited state  
Single QW = Low doping Modulation doped QW 

transverse momenta 

position vector 
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Intersubband Absorption Spectrum 

initial state final state 

# electrons per unit volume in nth subband low temperature 

intersubband dipole moment 



56 

Absorption in a Superlattice 
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Intersubband Absorption Spectrum 

considering two levels occupied 

Using the se two previous results 

INTEGRATED ABSORBANCE 
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Reading Assignments: 
 

Sections 9.3 and 9.4 of Chuang’s book 
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Absorption coefficient 
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Gain coefficient 
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Two-dimensional quantum confinement in quantum-wire (QWR) semiconductor 
lasers is expected to yield improved static and dynamic performance compared to 
conventional quantum-well (QW) lasers.1,2 The improved features include very low 
threshold currents (in the microampere regime), reduced temperature sensitivity, 
higher modulation bandwidth, and narrower spectral linewidth. 


