ECE 536 – Integrated Optics and Optoelectronics Lecture 9 – February 15, 2022

Spring 2022

Tu-Th 11:00am-12:20pm Prof. Umberto Ravaioli ECE Department, University of Illinois

Lecture 9 Outline

- Optical Absorption
- Optical Gain

Quick Recap – Absorption Coefficient

$$H'_{ba} \simeq -\frac{e}{m_o} \mathbf{A} \cdot \langle b | \mathbf{p} | a \rangle = -\frac{eA_o}{2m_o} \hat{e} \cdot \mathbf{p}_{ba}$$

Quick Recap – Absorption Coefficient

$$\alpha = C_o \frac{2}{V} \sum_{k_a} \sum_{k_b} |\hat{e} \cdot \mathbf{p}_{ba}|^2 \delta (E_b - E_a - \hbar \omega) (f_a - f_b)$$

$$C_o = \frac{\pi e^2}{n_r c \varepsilon_0 m_0^2 \omega} \qquad p_{ba} = \langle b | \frac{\hbar}{i} \nabla | a \rangle = \int \Psi_b^* (r) \frac{\hbar}{i} \nabla \Psi_a (r)$$

Expressed in terms of the electric dipole moment

$$\alpha(\hbar\omega) = \frac{\pi\omega}{n_r c\varepsilon_0} \frac{2}{V} \sum_{k_a} \sum_{k_b} |\hat{e} \cdot \mu_{ba}|^2 \delta(E_b - E_a - \hbar\omega) (f_a - f_b)$$

$$\boldsymbol{\mu}_{ba} = e \left\langle b \right| \mathbf{r} \left| a \right\rangle = e \mathbf{r}_{ba}$$

Then we have asked ourselves how to calculate the optical matrix element we have in the net upward transition

$$R = R_{a \to b} - R_{b \to a} = \frac{2}{V} \sum_{k_a} \sum_{k_b} \frac{2\pi}{\hbar} |H'_{ba}|^2 \delta \left(E_b - E_a - \hbar \omega \right) \left(f_a - f_b \right)$$

$$H'_{ba} = \left\langle b \right| \frac{-eA(\mathbf{r})}{m_0} \cdot \mathbf{p} \left| a \right\rangle$$

Then we have asked ourselves how to calculate the optical matrix element we have in the net upward transition

$$R = R_{a \to b} - R_{b \to a} = \frac{2}{V} \sum_{k_a} \sum_{k_b} \frac{2\pi}{\hbar} |H'_{ba}|^2 \delta \left(E_b - E_a - \hbar \omega \right) \left(f_a - f_b \right)$$

$$H'_{ba} = \left\langle b \right| \frac{-eA(\mathbf{r})}{m_0} \cdot \mathbf{p} \left| a \right\rangle$$

We separated the integral into the product of two integrals

$$\begin{aligned} \alpha(\hbar\omega) &= \frac{\hbar\omega}{\left(\frac{n_{r}c\varepsilon_{o}\omega^{2}A_{o}^{2}}{2}\right)^{2}} \frac{2}{V} \sum_{k_{a}} \sum_{k_{b}} \frac{2\pi}{\hbar} |H_{ba}'|^{2} \delta(E_{b} - E_{a} - \hbar\omega)(f_{a} - f_{b}) \\ &= \frac{\hbar\omega}{\left(\frac{n_{r}c\varepsilon_{o}\omega^{2}A_{o}^{2}}{2}\right)^{2}} \frac{2}{V} \sum_{k_{v}} \sum_{k_{c}} \frac{2\pi}{\hbar} \left|\frac{-eA_{o}}{2m_{o}}\hat{e}\cdot\mathbf{p}_{cv}\delta_{\mathbf{k}_{c},\mathbf{k}_{v}}\right|^{2} \delta(E_{c} - E_{v} - \hbar\omega)(f_{v} - f_{c}) \\ &= \frac{\pi e^{2}}{n_{r}c\varepsilon_{o}m_{o}^{2}\omega} \frac{2}{V} \sum_{k_{v}} \sum_{k_{c}} |\hat{e}\cdot\mathbf{p}_{cv}|^{2} \delta_{\mathbf{k}_{c},\mathbf{k}_{v}} \delta(E_{c} - E_{v} - \hbar\omega)(f_{v} - f_{c}) \\ &= C_{o} \frac{2}{V} \sum_{k} |\hat{e}\cdot\mathbf{p}_{cv}|^{2} \delta(E_{c} - E_{v} - \hbar\omega)(f_{v}(\mathbf{k}) - f_{c}(\mathbf{k})) \end{aligned}$$

 \boldsymbol{k} represents both $\boldsymbol{k}_{\rm c}$ and $\boldsymbol{k}_{\rm v}$ They are equal by the k-selection rule

Starting with the general expression

$$\alpha(\hbar\omega) = C_o \frac{2}{V} \sum_{\mathbf{k}} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \delta \left(E_c - E_v - \hbar\omega \right) \left(f_v - f_c \right)$$

we assume an undoped bulk material in thermal equilibrium, with valence band fully occupied and conduction band completely empty

$$F_{c} = F_{v} = E_{F} \qquad f_{v} = 1 \qquad f_{c} = 0$$

$$\alpha_{0} (\hbar \omega) = C_{0} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^{2} \int \frac{2d^{2}k}{(2\pi)^{3}} \delta \left(E_{g} + \frac{\hbar^{2}k^{2}}{2m_{r}} - \hbar \omega \right)$$

$$\frac{1}{m_{r}^{*}} = \frac{1}{m_{e}^{*}} + \frac{1}{m_{b}^{*}}$$

The integral can solved analytically arriving at the **bulk absorption coefficient**

$$\alpha_{o}(\hbar\omega) = C_{o} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^{2} \rho_{r} \left(\hbar\omega - E_{g} \right)$$
momentum matrix
element
joint (reduced) density of states
$$\alpha_{0}(\hbar\omega)$$

$$\rho_{r} \left(\hbar\omega - E_{g} \right) = \frac{1}{2\pi^{2}} \left(\frac{2m_{r}^{*}}{\hbar^{2}} \right)^{3/2} \left(\hbar\omega - E_{g} \right)^{1/2}$$

$$\frac{1}{m_{r}^{*}} = \frac{1}{m_{e}^{*}} + \frac{1}{m_{h}^{*}}$$

$$\frac{1}{m_{r}^{*}} = \frac{1}{m_{e}^{*}} + \frac{1}{m_{h}^{*}}$$
10

Under current injection or optical pumping, we have quasi-Fermi levels F_c and F_v

$$\alpha(\hbar\omega) = C_o \frac{2}{V} \sum_{k} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \delta \left(E_c - E_v - \hbar\omega \right) \left(f_v(\mathbf{k}) - f_c(\mathbf{k}) \right)$$
$$f_v(\mathbf{k}) = \frac{1}{1 + e^{(E_v(\mathbf{k}) - F_v)/kT}} \qquad f_c(\mathbf{k}) = \frac{1}{1 + e^{(E_c(\mathbf{k}) - F_c)/kT}}$$

We carry out the integral as before

$$\alpha(\hbar\omega) = C_0 \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \int \frac{2d^2k}{\left(2\pi\right)^3} \delta\left(E_g + \frac{\hbar^2 k^2}{2m_r} - \hbar\omega \right) \left[f_v(k) - f_c(k) \right]$$

$$\alpha(\hbar\omega) = C_0 \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \int \frac{2d^2k}{(2\pi)^3} \delta\left(E_g + \frac{\hbar^2k^2}{2m_r} - \hbar\omega \right) \left[f_v(k) - f_c(k) \right]$$

$$\alpha(\hbar\omega) = \alpha_0(\hbar\omega) \left(f_v(\mathbf{k}_0) - f_c(\mathbf{k}_0) \right)$$

$$|\mathbf{k}| = \sqrt{\frac{2m_r^*}{\hbar^2}}(\hbar\omega - E_g) \equiv \mathbf{k}_0$$

$$\alpha(\hbar\omega) = \alpha_0(\hbar\omega) \left(f_v(\mathbf{k}_0) - f_c(\mathbf{k}_0) \right)$$

We have Gain (negative absorption) when

$$F_c - F_v > E_c - E_v = \hbar\omega$$

population inversion condition (Bernard-Duraffourg condition)

The magnitude of the loss (or gain) depends on wavelength. If the separation of the quasi-Fermi levels is greater than the band gap, there is gain.

- Photons with energies greater than the bandgap but less than the energy separation of the quasi-Fermi levels will experience gain
- Photons with energies greater than the separation of the quasi-Fermi levels will experience loss

Gain condition

$$F_C - F_V > \hbar \omega > E_C - E_V$$

Interband Absorption and Gain in Quantum Well

Simple square well potential (infinite barrier)

Consider a 1D well in 3D space quantized along z- axis

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(z)\right]\psi(x, y, z) = E\psi(x, y, z)$$

 $\psi_n(x, y, z) = 0 \qquad \qquad z \le 0, z \ge L$

2-band model – we need to add the valence band

Interband Absorption and Gain in Quantum Well

(We neglect here exciton interactions between electrons and holes)

Starting with the general expression for the absorption coefficient

$$\alpha(\hbar\omega) = C_o \frac{2}{V} \sum_{\mathbf{k}_a} \sum_{\mathbf{k}_b} \left| \hat{e} \cdot \mathbf{p}_{ba} \right|^2 \delta(E_b - E_a - \hbar\omega) (f_a - f_b)$$

$$\mathbf{p}_{ba} = \langle \psi_b | \mathbf{p} | \psi_a \rangle = \int \psi_b^* \frac{\hbar}{i} \nabla \psi_a \, d^3 \mathbf{r}$$
$$= \int u_c^*(\mathbf{r}) \frac{e^{-i\mathbf{k}'_t \cdot \mathbf{r}}}{\sqrt{A}} \phi_n^*(z) \frac{\hbar}{i} \nabla \left(u_v(\mathbf{r}) \frac{e^{i\mathbf{k}_t \cdot \mathbf{r}}}{\sqrt{A}} g_m(z) \right) \, d^3 \mathbf{r}$$

$$\mathbf{p}_{ba} = \langle \psi_b | \mathbf{p} | \psi_a \rangle = \int \psi_b^* \frac{\hbar}{i} \nabla \psi_a \, d^3 \mathbf{r}$$
$$= \int u_c^*(\mathbf{r}) \frac{e^{-i\mathbf{k}'_t \cdot \mathbf{r}}}{\sqrt{A}} \phi_n^*(z) \frac{\hbar}{i} \nabla \left(u_v(\mathbf{r}) \frac{e^{i\mathbf{k}_t \cdot \mathbf{r}}}{\sqrt{A}} g_m(z) \right) \, d^3 \mathbf{r}$$

$$= \frac{\hbar}{iA} \int u_c^*(\mathbf{r}) e^{-i\mathbf{k}_t' \cdot \mathbf{r}} \phi_n^*(z) \left[e^{i\mathbf{k}_t \cdot \mathbf{r}} g_m(z) \nabla u_v(\mathbf{r}) + u_v(\mathbf{r}) g_m(z) \nabla e^{i\mathbf{k}_t \cdot \mathbf{r}} \right]$$
$$+ u_v(\mathbf{r}) e^{i\mathbf{k}_t \cdot \mathbf{r}} \nabla g_m(z) d^3 \mathbf{r}$$

$$= \frac{\hbar}{iA} \int u_{c}^{*}(\mathbf{r}) \nabla u_{v}(\mathbf{r}) e^{-i\mathbf{k}_{t}' \cdot \mathbf{r}} e^{i\mathbf{k}_{t} \cdot \mathbf{r}} \phi_{n}^{*}(z) g_{m}(z) + \cdots$$

$$\approx \langle u_{c} | \mathbf{p} | u_{v} \rangle \delta_{\mathbf{k}_{t}, \mathbf{k}_{t}'} I_{hm}^{en}$$

$$I_{hm}^{en} = \int_{-\infty}^{\infty} \phi_n^*(z) \ g_m(z) \ dz$$

overlap integral

Transition energies (all are relative to top of valence band)

Energy level of hole state (NOTE: it's negative)

Transition energies (all are relative to top of valence band)

Band edge transition energy

Transverse kinetic energy due to in-plane k-vector 24

Absorption expression for quantum well case

$$\alpha(\hbar\omega) = C_o \frac{2}{V} \sum_{\mathbf{k}_a} \sum_{\mathbf{k}_b} \left| \hat{e} \cdot \mathbf{p}_{ba} \right|^2 \delta(E_b - E_a - \hbar\omega) (f_a - f_b)$$

- Summations over k_a and k_b become summations over k_t and k_t'
- The k-selection rule establishes $\mathbf{k}_t = \mathbf{k}_t'$ so the sum becomes a sum over \mathbf{k}_t
- We need to sum also over *m* and *n*

$$\alpha(\hbar\omega) = C_0 \sum_{n,m} \left| I_{hm}^{en} \right|^2 \frac{2}{V} \sum_{\mathbf{k}_t} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \delta\left(E_{hm}^{en} + E_t - \hbar\omega \right) \left(f_v^m - f_c^n \right)$$

Joint Density of States

E,

$$\frac{2}{V}\sum_{\mathbf{k}_{t}} = \frac{2}{V}\int \frac{d^{2}\mathbf{k}_{t}}{\left(\frac{2\pi}{L}\right)^{2}} = \frac{2A}{V}\int \frac{d^{2}\mathbf{k}_{t}}{\left(2\pi\right)^{2}} = \frac{1}{\pi L_{z}}\int_{0}^{\infty}k_{t}dk_{t} = \int_{0}^{\infty}\rho_{r}^{2D}dE_{t}$$
$$= \frac{\hbar^{2}k_{t}^{2}}{2m_{r}^{*}} \longrightarrow dE_{t} = \frac{\hbar^{2}}{m_{r}^{*}}k_{t}dk_{t} \longrightarrow k_{t}dk_{t} = \frac{m_{r}^{*}}{\hbar^{2}}dE_{t} \longrightarrow \rho_{r}^{2D} = \frac{m_{r}^{*}}{\pi\hbar^{2}L_{z}}$$

For an unpumped semiconductor in thermal equilibrium

$$f_v^m = 1 \qquad f_c^n = 0$$

$$\alpha(\hbar\omega) = C_0 \sum_{m,n} \left| I_{hm}^{en} \right|^2 \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \int_0^\infty \rho_r^{2D} \delta\left(E_{hm}^{en} + E_t - \hbar\omega \right) \left(f_c^m - f_c^n \right) dE_t$$

$$\boldsymbol{\alpha}_{0}(\hbar\boldsymbol{\omega}) = C_{0} \sum_{m,n} \left| I_{hm}^{en} \right|^{2} \left| \hat{\boldsymbol{e}} \cdot \mathbf{p}_{cv} \right|^{2} \rho_{r}^{2D} H\left(\hbar\boldsymbol{\omega} - E_{hm}^{en} \right)$$

$$\alpha_{0}(\hbar\omega) = C_{0} |\hat{e} \cdot \mathbf{p}_{cv}|^{2} \begin{cases} \frac{m_{r}^{*}}{\pi\hbar^{2}L_{z}} & \text{for } E_{h1}^{e1} < \hbar\omega < E_{h2}^{e2} \\ 2\frac{m_{r}^{*}}{\pi\hbar^{2}L_{z}} & \text{for } E_{h2}^{e2} < \hbar\omega < E_{h3}^{e3} \\ 3\frac{m_{r}^{*}}{\pi\hbar^{2}L_{z}} & \text{for } E_{h3}^{e3} < \hbar\omega < E_{h4}^{e4} \\ etc & etc \end{cases}$$

For the case of carrier injection

$$\alpha(\hbar\omega) = \alpha_0(\hbar\omega) \Big[f_v^m(\hbar\omega - E_{hm}^{en}) - f_c^n(\hbar\omega - E_{hm}^{en}) \Big]$$
$$= \alpha_0(\hbar\omega) \Big[f_v^m(E_t) - f_c^n(E_t) \Big]$$

Reading Assignments:

Sections 9.3 and 9.4 of Chuang's book

Electron Quasi Fermi Levels (when "n" electrons have been injected)

$$n = \sum_{\substack{n-occupied\\subbands}} N_n = \sum_n \int_0^\infty \rho_e^{2D} (E) f_c^n (E) dE$$

$$N_n = \int_0^\infty \rho_e^{2D} (E) f_c^n (E) dE = \frac{m_e^*}{\pi \hbar^2 L_z} \int_{E_{en}}^\infty f_c^n (E) dE$$

$$\int_{E_{en}}^{\infty} f_c^n(E) dE = \int_{E_{en}}^{\infty} \frac{1}{1 + e^{(E - F_c)/k_B T}} dE = -k_B T \ln\left(1 + e^{(F_c - E)/k_B T}\right)\Big|_{E_{en}}^{\infty}$$

$$N_{n} = \frac{m_{e}^{*}k_{B}T}{\pi\hbar^{2}L_{z}} \ln\left(1 + e^{(F_{c} - E_{en})/k_{B}T}\right) = n_{c} \ln\left(1 + e^{(F_{c} - E_{en})/k_{B}T}\right)$$

Electron Quasi Fermi Levels (when "n" electrons have been injected)

Holes Quasi Fermi level (when "p" holes have been injected)

$$E_a = E_{hm} - \frac{\hbar^2 k_t^2}{2m_h^*} \text{ where } E_{hm} < 0$$

$$\frac{2}{V}\sum_{\mathbf{k}_{t}} = \frac{2}{V} \int \frac{d^{2}\mathbf{k}_{t}}{\left(\frac{2\pi}{L}\right)^{2}} = \frac{2A}{V} \int \frac{d^{2}\mathbf{k}_{t}}{\left(2\pi\right)^{2}} = \frac{1}{\pi L_{z}} \int_{0}^{\infty} k_{t} dk_{t}$$

$$= -\int_{0}^{-\infty} \rho_{h}^{2D} dE_{t,h} = \int_{-\infty}^{0} \rho_{h}^{2D} dE_{t,h}$$

Holes Quasi Fermi level (when "p" holes have been injected)

$$p = n + N_{A}^{-} - N_{D}^{+} = \sum_{\substack{\text{occupied}\\\text{subbands}}} P_{m} = \sum_{\substack{\text{occupied}\\\text{subbands}}} \int_{-\infty}^{0} \rho_{h}^{2D} (E) \Big[1 - f_{v}^{m} (E) \Big] dE$$

$$P_{m} = \int_{-\infty}^{0} \rho_{h}^{2D}(E) f_{h}^{m}(E) dE = \frac{m_{h}^{*}}{\pi \hbar^{2} L_{z}} \int_{-\infty}^{E_{hm}} f_{h}^{m}(E) dE$$

$$\int_{-\infty}^{E_{hm}} f_h^m(E) dE = \int_{-\infty}^{E_{hm}} \frac{1}{1 + e^{-(E - F_v)/k_B T}} dE = k_B T \ln\left(1 + e^{(E - F_v)/k_B T}\right) \Big|_{-\infty}^{E_{hm}}$$

$$P_{m} = \frac{m_{h}^{*} k_{B} T}{\pi \hbar^{2} L_{z}} \ln \left(1 + e^{(E_{hm} - F_{v})/k_{B}T} \right) = n_{v} \ln \left(1 + e^{(E_{hm} - F_{v})/k_{B}T} \right)$$

Holes Quasi Fermi level (when "p" holes have been injected)

Gain Spectrum

Zero Linewidth Case:

$$g(\hbar\omega) = C_0 \sum_{m,n} \left| I_{hm}^{en} \right|^2 \left| \hat{e} \cdot \mathbf{p}_{ev} \right|^2 \left[f_c^n(E_t) - f_v^m(E_t) \right] \rho_r^{2D} H(\hbar\omega - E_{hm}^{en})$$

$$C_o = \frac{\pi e^2}{n_r c \varepsilon_0 m_0^2 \omega} \qquad \qquad I_{hm}^{en} = \int_{-\infty}^{\infty} \phi_n^*(z) g_m(z) dz \qquad \qquad \rho_r^{2D} = \frac{m_r^*}{\pi \hbar^2 L_z}$$

$$f_c^n(E_t) = \frac{1}{1 + \exp\left[\left(E_g + E_{en} + \frac{m_r^*}{m_e^*}E_t - F_c\right)/k_BT\right]}$$

$$f_v^m(E_t) = \frac{1}{1 + \exp\left[\left(E_{hm} - \frac{m_r^*}{m_h^*}E_t - F_v\right)/k_BT\right]}$$

Gain Spectrum

$$g(\hbar\omega) = C_0 \sum_{m,n} \left| I_{hm}^{en} \right|^2 \int_0^\infty dE_t \rho_r^{2D} \left| \hat{e} \cdot \mathbf{p}_{ev} \right|^2 \frac{\gamma / \pi}{\left[E_{hm}^{en} + E_t - \hbar\omega \right]^2 + \gamma^2} \left[f_c^n \left(E_t \right) - f_v^m \left(E_t \right) \right]$$

Gain Spectra with and without broadening

Transition involving one single electron and hole subband pair

Transition involving two electron and two hole subbands

Comparison with experimental data

Zielinski et al, IEEE J. Quantum Electronics, QE-23, p.969 (1987).

Quantum Dots

Ideal quantum dot assumptions

- Uniform dot size
- Uniform distribution

Ideal Quantum Dot – Wave functions and Energies

Conduction Band – Wave functions and Energies

Wave Functions (Assume infinite barrier for simplicity)

$$\psi_{c}(x,y,z) = \frac{\sqrt{8}}{\sqrt{abc}} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \sin\left(\frac{l\pi}{c}z\right) u_{c}(\mathbf{r})$$

Energy eigenvalues

$$E_{c}^{mnl} = E_{c0} + \frac{\hbar^2}{2m_e^*} \left[\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{l\pi}{c}\right)^2 \right]$$

Electron Density

$$n = \frac{2}{V} \sum_{m,n,l} f_c(E) = N_{dot}^{3D} 2 \sum_{m,n,l} f_c(E_c^{nml}) = 2 \frac{N_{dot}^{2D}}{L_z} \sum_{m,n,l} \frac{1}{1 + e^{\left(\frac{E_c^{mml} - F_c}{K_c}\right)/k_B T}}$$

Valence Band – Wave functions and Energies

Wave Functions (Assume infinite barrier for simplicity)

$$\psi_{v}(x,y,z) = \frac{\sqrt{8}}{\sqrt{abc}} \sin\left(\frac{m'\pi}{a}x\right) \sin\left(\frac{n'\pi}{b}y\right) \sin\left(\frac{l'\pi}{c}z\right) u_{v}(\mathbf{r})$$

Energy eigenvalues

$$E_{v}^{m'n'l'} = E_{v0} - \frac{\hbar^2}{2m_h^*} \left[\left(\frac{m'\pi}{a} \right)^2 + \left(\frac{n'\pi}{b} \right)^2 + \left(\frac{l'\pi}{c} \right)^2 \right]$$

Hole Density

$$p = \frac{2}{V} \sum_{m',n',l'} \left(1 - f_{v}(E) \right) = N_{dot}^{3D} 2 \sum_{m',n',l'} \left(1 - f_{v}(E_{v}^{n'm'l'}) \right) = 2 \frac{N_{dot}^{2D}}{L_{z}} \sum_{m',n',l'} 1 - \frac{1}{1 + e^{\left(E_{v}^{m'n'l'} - F_{v}\right)/k_{B}T}}$$

$$p = 2 \frac{N_{dot}^{2D}}{L_z} \sum_{m',n',l'} \frac{1}{1 + e^{\left(F_v - E_v^{m'n'l'}\right)/k_B T}}$$

Interband Absorption Spectrum

General expression

$$\alpha(\hbar\omega) = C_o \frac{2}{V} \sum_{\mathbf{k}} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \delta(E_c - E_v - \hbar\omega) (f_v - f_c)$$

Quantization in all dimensions \rightarrow sum over m, n, l

$$\alpha(\hbar\omega) = C_o \frac{2}{V} \sum_{m,n,l} \sum_{m',n',l'} \left| \left\langle \boldsymbol{\psi}_c \middle| \hat{\boldsymbol{e}} \cdot \mathbf{p} \middle| \boldsymbol{\psi}_v \right\rangle \right|^2 \delta \left(E_c^{mnl} - E_v^{m'n'l'} - \hbar\omega \right) \left(f_v - f_c \right)$$

$$\left| \left\langle \boldsymbol{\psi}_c \middle| \hat{\boldsymbol{e}} \cdot \mathbf{p} \middle| \boldsymbol{\psi}_v \right\rangle \approx \left\langle u_c \middle| \hat{\boldsymbol{e}} \cdot \mathbf{p} \middle| u_v \right\rangle \delta_{mm'} \delta_{nn'} \delta_{ll'} = \hat{\boldsymbol{e}} \cdot \mathbf{p}_{cv} \delta_{mm'} \delta_{nn'} \delta_{ll'}$$

$$\rightarrow \alpha(\hbar\omega) = C_o \frac{2N_{dot}^{2D}}{L_z} \sum_{m,n,l} |\hat{e} \cdot \mathbf{p}_{cv}|^2 \delta \left(E_c^{mnl} - E_v^{mnl} - \hbar\omega \right) \left(f_v - f_c \right)$$

with Interband Transition Energies

$$E_{cv}^{mnl} = E_{c}^{mnl} - E_{v}^{mnl} = E_{g} + \frac{\hbar^{2}}{2m_{r}^{*}} \left[\left(\frac{m\pi}{a} \right)^{2} + \left(\frac{n\pi}{b} \right)^{2} + \left(\frac{l\pi}{c} \right)^{2} \right]$$

Absorption – Homogeneous Broadening

In case of no carrier injection, we can approximate $f_{m v}=1$ $f_{m c}=0$

For homogeneous broadening, the <u>delta function can be replaced</u> by a Lorentzian

$$\alpha_{0}(\hbar\omega) = C_{0} \frac{2N_{dot}^{2D}}{L_{z}} \sum_{m,n,l} |\hat{e} \cdot \mathbf{p}_{cv}|^{2} L(E_{cv}^{mnl} - \hbar\omega)$$
$$L(E - \hbar\omega) = \frac{\gamma/\pi}{(E - \hbar\omega)^{2} + \gamma^{2}}$$

With carrier injection

$$\alpha(\hbar\omega) = C_0 \frac{2N_{dot}^{2D}}{L_z} \sum_{m,n,l} |\hat{e} \cdot \mathbf{p}_{cv}|^2 L(E_{cv}^{mnl} - \hbar\omega)(f_v - f_c)$$

Absorption – Inhomogeneous Broadening

For unifom dots we had: $n = 2 \frac{N_{dot}^{2D}}{L_z} \sum_{m,n,l} f_c \left(E_c^{mnl} \right)$

In realistic case we will have variations of quantum dot size. Dot energy level become a Gaussian distribution with

$$G(E) = \frac{1}{\sqrt{2\pi\sigma_c}} e^{-\left(E - E_c^{mnl}\right)^2 / 2\sigma_c^2} \begin{cases} \text{mean} = E_c^{mnl} \\ \text{FWHM} = 2\sqrt{2\ln 2\sigma_c} \approx 2.35\sigma_c \end{cases}$$

carrier density
$$n = 2\frac{N_{dot}^{2D}}{L_z} \sum_{m,n,l=0}^{\infty} dE \ G(E) f_c(E)$$

$$\alpha(\hbar\omega) = C_0 \sum_{m,n,l} \int_0^\infty dE \left| \hat{e} \cdot \mathbf{p}_{ev} \right|^2 D(E) L(E - \hbar\omega) (f_v - f_c)$$
$$D(E) = 2 \frac{N_{dot}^{2D}}{L_z} \frac{1}{\sqrt{2\pi\sigma}} e^{-(E - E_{ev}^{mnl})^2/2\sigma^2} \qquad \sigma^2 = \sigma_c^2 + \sigma_v^2$$

Examples = Homogeneous Broadening FWHM = 30 meV

Examples = Homogeneous +Inhomogeneous Broadening FWHM = 30 meV FWHM = 50 meV

Examples = Homogeneous +Inhomogeneous Broadening FWHM = 30 meV FWHM = 50 meV

Quantum Wires

Ideal Quantum Wire – Wave functions and Energies

Density of States

Density of state in a 1-D wire quantized along the x and y directions

$$\rho_{e}^{1D}(E) = \sum_{m,n} \frac{1}{\pi} \sqrt{\frac{2m_{e}^{*}}{\hbar^{2}}} \frac{1}{\sqrt{E - E_{c}^{mn}}} \quad \text{for } E > E_{c}^{mn}$$

Absorption coefficient

$$\alpha(\hbar\omega) = C_0 N_{wr} \sum_{m,n} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \rho_r^{1D} \left(\hbar\omega - E_c^{mn} \right) \left(f_v - f_c \right)$$

joint density of states

$$\rho_r^{1D} \left(\hbar \omega - E_c^{mn} \right) = \frac{1}{\pi} \sqrt{\frac{2m_r^*}{\hbar^2}} \frac{1}{\sqrt{\hbar \omega - E_c^{mn}}}$$

$$E_{cv}^{mn} = E_g + \frac{\hbar^2}{2m_r^*} \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right]$$

Intersubband Absorption

Transition between ground state and first excited state

 $\psi_{a}(\mathbf{r}) = u_{c}(\mathbf{r}) \frac{e^{i\mathbf{k}_{t}\cdot\boldsymbol{\rho}}}{\sqrt{A}} \phi_{1}(z)$ $\psi_{b}(\mathbf{r}) = u_{c'}(\mathbf{r}) \frac{e^{i\mathbf{k}_{t}'\cdot\boldsymbol{\rho}}}{\sqrt{A}} \phi_{2}(z)$

transverse momenta

 $\mathbf{k}_{t} = k_{x}\hat{x} + k_{y}\hat{y}$ $\mathbf{k}_{t}' = k_{x}'\hat{x} + k_{y}'\hat{y}$

position vector $\boldsymbol{\rho} = x\hat{x} + y\hat{y}$

Intersubband Absorption Spectrum

$$\begin{aligned} \text{initial state} \quad E_a &= E_1 + \frac{\hbar^2 k_t^2}{2m_e^*} \quad \text{final state} \quad E_b = E_1 + \frac{\hbar^2 k_t^2}{2m_e^*} \\ \alpha(\hbar\omega) &= \left(\frac{\omega}{n_r c \varepsilon_0}\right) \frac{2}{V} \sum_{\mathbf{k}_t} \sum_{\mathbf{k}_t'} \frac{\left|\hat{e} \cdot \boldsymbol{\mu}_{ba}\right|^2 \gamma}{\left(E_b - E_a - \hbar\omega\right)^2 + \gamma^2} (f_a - f_b) \\ &= \left(\frac{\omega}{n_r c \varepsilon_0}\right) \frac{\left|\boldsymbol{\mu}_{21}\right|^2 \gamma}{\left(E_2 - E_1 - \hbar\omega\right)^2 + \gamma^2} \frac{2}{V} \sum_{\mathbf{k}_t} (f_a - f_b) = \left(\frac{\omega}{n_r c \varepsilon_0}\right) \frac{\left|\boldsymbol{\mu}_{21}\right|^2 \gamma}{\left(E_2 - E_1 - \hbar\omega\right)^2 + \gamma^2} (N_1 - N_2) \end{aligned}$$

intersubband dipole moment

$$\boldsymbol{\mu}_{21} = \left\langle \phi_2 \right| ez \left| \phi_1 \right\rangle = \int \phi_2^* \left(z \right) ez \phi_1 \left(z \right) dz$$

electrons per unit volume in nth subband

$$N_n = \frac{m_e^* k_B T}{\pi \hbar^2 L_z} \ln \left[1 + e^{\left(E_F - E_n\right)/k_B T} \right]$$

low temperature
$$(E_F - E_n) \gg k_B T$$

$$N_n = \frac{m_e^*}{\pi \hbar^2 L_z} (E_F - E_n)$$

1

Absorption in a Superlattice

Intersubband Absorption Spectrum

Using the se two previous results

$$\alpha(\hbar\omega) = \left(\frac{\omega}{n_r c\varepsilon_0}\right) \frac{\left|\boldsymbol{\mu}_{21}\right|^2 \gamma}{\left(E_2 - E_1 - \hbar\omega\right)^2 + \gamma^2} \left(N_1 - N_2\right)$$

$$m^*$$

$$N_n = \frac{m_e}{\pi \hbar^2 L_z} \left(E_F - E_n \right)$$

considering two levels occupied

$$\alpha(\hbar\omega) = \left(\frac{\omega}{n_r c\varepsilon_0}\right) \frac{\left|\boldsymbol{\mu}_{21}\right|^2 \gamma}{\left(E_2 - E_1 - \hbar\omega\right)^2 + \gamma^2} \left(\frac{m_e^*}{\pi\hbar^2 L_z}\right) \left(E_2 - E_1\right)$$

INTEGRATED ABSORBANCE

$$A = \int_{0}^{\infty} \alpha(\hbar\omega) d(\hbar\omega) \simeq \left(\frac{\omega_{21}}{n_{r}c\varepsilon_{0}}\right) \left|\mu_{21}\right|^{2} \pi(N_{1} - N_{2})$$

Reading Assignments:

Sections 9.3 and 9.4 of Chuang's book

Absorption coefficient

Gain coefficient

Two-dimensional quantum confinement in quantum-wire (QWR) semiconductor lasers is expected to yield improved static and dynamic performance compared to conventional quantum-well (QW) lasers.^{1,2} The improved features include very low threshold currents (in the microampere regime), reduced temperature sensitivity, higher modulation bandwidth, and narrower spectral linewidth.