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Lecture 10 Outline 

• Optical Absorption-Gain in reduced 
dimensions (quantum wells, wires and dots) 
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Interband Absorption and Gain in 
Quantum Well 
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2-band model – we need to add the valence band 

𝐸𝐶  

𝐸𝑉 

𝑛 = 1 

𝑚 = 1 

𝑚 = 2 

𝐸𝐺  

heavy holes  
or light holes 

𝐤𝑡
′= transverse momentum for electrons 

 
𝐤𝑡= transverse momentum for holes 

periodic Bloch wave 

plane wave on (x,y) plane 

quantized envelope wavefunction 
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Interband Absorption and Gain in Quantum Well 

(We neglect here exciton interactions between electrons and holes) 
 

Starting with the general expression for the absorption coefficient 

𝐩𝑏𝑎 = 𝑏 𝐩 𝑎 =  𝑏
∗  


𝑖
𝛻𝑎 𝑑

3𝐫 

=  𝑢𝑐
∗ 𝐫

𝑒−𝑖𝐤𝑡
′ ∙𝐫

𝐴
𝑛
∗ (𝑧)



𝑖
𝛻 𝑢𝑣 𝐫

𝑒𝑖𝐤𝑡∙𝐫

𝐴
𝑔𝑚 𝑧  𝑑3𝐫 
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𝐩𝑏𝑎 ≈ 𝑢𝑐 𝐩 𝑢𝑣   𝛿𝐤𝑡,𝐤𝑡′   𝑰ℎ𝑚
𝑒𝑛  

overlap integral of quantized 
wavefunctions in well 

k-selection rule   →  𝐤𝑡 = 𝐤𝑡
′  

conservation of transverse 
momentum from exponentials 

electron state 𝑛 

hole state 𝑚 

𝑰ℎ𝑚
𝑒𝑛 =  𝑛

∗ 𝑧  𝑔𝑚 𝑧  𝑑𝑧

∞

−∞

 

overlap integral 

𝐩𝑐𝑣 
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Transition energies (all are relative to top of valence band) 

𝐸𝐶  

𝐸𝑉 

𝑛 = 1 

𝑚 = 1 

𝑚 = 2 

𝐸𝐺  

𝐸 = 0 

Energy level of hole state 
(NOTE: it’s negative) 

Energy level of electron state 
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Transition energies (all are relative to top of valence band) 

𝐸𝐶  

𝐸𝑉 

𝑛 = 1 

𝑚 = 1 

𝑚 = 2 

𝐸𝐺  

𝐸 = 0 
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Absorption expression for quantum well case 

• Summations over k𝑎 and k𝑏  become summations over k𝑡 and k𝑡
′  

 
• The k-selection rule establishes k𝑡 = k𝑡

′  so the sum becomes a 
sum over k𝑡 
 

• We need to sum also over 𝑚 and 𝑛  
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Joint Density of States 

For an unpumped semiconductor in thermal equilibrium  𝑓𝑣
𝑚 = 1 𝑓𝑐

𝑛 = 0 
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GaAs bulk 
example 
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Transition involving one single electron 
and hole subband pair 

Transition involving two electron and 
two hole subbands 
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Zielinski et al, IEEE J. Quantum Electronics, QE-23, p.969 (1987). 



Quantum Dots 
Ideal quantum dot assumptions 

• Uniform dot size 

• Uniform distribution 
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Ideal Quantum Dot – Wave functions and Energies 

Dot Density 

Fill Factor 

Dot Size Total Volume of Single Dot 
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Conduction Band – Wave functions and Energies 

Wave Functions (Assume infinite barrier for simplicity) 

Energy eigenvalues 

Electron Density 
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Valence Band – Wave functions and Energies 

Wave Functions (Assume infinite barrier for simplicity) 

Energy eigenvalues 

Hole Density 
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Interband Absorption Spectrum 

General expression 

Quantization in all dimensions    sum over 𝒎,𝒏, 𝒍 

with Interband Transition Energies 
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Absorption – Homogeneous Broadening 

In case of no carrier injection, we can approximate  𝑓𝑣 = 1 𝑓𝑐 = 0 

For homogeneous broadening, the delta function can be replaced by a 
Lorentzian 

With carrier injection 
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Absorption – Inhomogeneous Broadening 

For uniform dots we had: 

In realistic case we will have variations of quantum dot size.  Dot energy 
level become a Gaussian distribution with  

carrier density 
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Examples = Homogeneous Broadening 

FWHM = 30 meV 
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Examples = Homogeneous +Inhomogeneous Broadening 
FWHM = 30 meV FWHM = 50 meV 
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Examples = Homogeneous +Inhomogeneous Broadening 
FWHM = 30 meV FWHM = 50 meV 



Quantum Wires 
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Ideal Quantum Wire – Wave functions and Energies 

Areal Density in 𝒙 − 𝒚  cross-section 

Fill Factor Wire Length 

Wave Functions 

Energy eigenvalues 
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Density of States 

Electron Density 

Density of state in a 1-D wire quantized along the 𝒙 and 𝒚 directions 
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Absorption coefficient 

joint density of states 



36 

Absorption coefficient 
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Gain coefficient 
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Two-dimensional quantum confinement in quantum-
wire (QWR) semiconductor lasers is expected. in 
principle, to yield improved static and dynamic 
performance compared to conventional quantum-well 
(QW) lasers.  
 
 
The improved features could include very low 
threshold currents (in the microampere regime), 
reduced temperature sensitivity, higher modulation 
bandwidth, and narrower spectral linewidth. 
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Gain in Semiconductors   
 

Calculated gain 
coefficient 

(Dot) 



Intersubband Absorption 
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Transition between ground state and first excited state  
Single QW = Low doping Modulation doped QW 

transverse momenta 

position vector 
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Intersubband Absorption Spectrum 

initial state final state 

# electrons per unit volume in nth subband low temperature 

intersubband dipole moment 
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Intersubband Absorption Spectrum 

considering two levels occupied 

Using the two previous results 

INTEGRATED ABSORBANCE 
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Example – Peak absorption coefficient in QW 
Consider a GaAs quantum well of width 𝐿𝑧 = 100Å, doped n-type corresponding 
to a 3D carrier concentration 𝑁 = 1018 cm−3.  The electron effective mass is 
𝑚𝑒
∗ = 0.0665𝑚0.  Let’s assume a simple infinite barrier model and 𝑇 = 300K. 

𝐸1 =
2

2𝑚𝑒
∗  
𝜋

𝐿𝑧

2

= 56.6 meV 

𝐸2 =
22

𝑚𝑒
∗  

𝜋

𝐿𝑧

2

= 226 meV 

𝜑1 𝑧 =
2

𝐿𝑧
sin

𝜋

𝐿𝑧
𝑧  

𝜑1 𝑧 =
2

𝐿𝑧
sin

2𝜋

𝐿𝑧
𝑧  

𝑁1 =
𝑚𝑒
∗𝑘𝐵𝑇

𝜋2𝐿𝑧
ln 1 + exp

𝐸𝐹 − 𝐸1
𝑘𝐵𝑇

=
𝑁2𝐷
𝐿𝑧
ln 1 + exp

𝐸𝐹 − 𝐸1
𝑘𝐵𝑇

≈ 1018cm−3  

Assume the number of electrons per unit volume (3D density) occupy only the first 
subband and the 2nd subband is empty 

𝑁2𝐷 =
𝑚𝑒
∗𝑘𝐵𝑇

𝜋2
= 7.19 × 1011𝑐𝑚−2 

𝐸𝐹 − 𝐸1 ≈ 0.0283 eV = 28.3 meV  
This is satisfied for  

𝐿𝑧 = 100 Å = 10
−6 cm 
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𝑁2 =
𝑁2𝐷
𝐿𝑧
ln 1 + exp

𝐸𝐹 − 𝐸2
𝑘𝐵𝑇

= 2.9 × 1015cm−3  

Now, calculate the density 𝑁2 with this Fermi level, to verify that 𝑁2 ≪ 𝑁 

𝜇21 = 𝑒 𝜑2 𝑧  𝑧 𝜑1 𝑧  𝑑𝑧
𝐿𝑧

0

= 𝑒
2

𝐿𝑧
 𝑧 sin

𝜋

𝐿𝑧
𝑧

𝐿𝑧

0

sin
2𝜋

𝐿𝑧
𝑧 𝑑𝑧 = 

 

= 𝑒
2

𝐿𝑧
 −

8𝐿𝑧
2

9𝜋2
= −

16

9 𝜋2
 𝑒 𝐿𝑧 = −18.013𝑒 Å = −2.882 × 10

−28C ∙ m 

 

𝐸1 

𝐸2 

𝐸𝐹  

56.6 meV 

226 meV 

84.9 meV 

28.3 meV 
It is indeed 𝑁2 ≪ 𝑁.  Otherwise, we would need 
to use the expression for 𝑁1 + 𝑁2 = 𝑁 to 
determine numerically the Fermi level. 
 

We can calculate now the dipole moment 
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Resources for symbolic manipulation can be very handy to evaluate integrals 
with complicated trigonometric functions 
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The peak absorption occurs for a photon energy 

𝜔 ≈ 𝐸2 − 𝐸1 = 169.4 meV 

with corresponding peak wavelength 

 ≈
1.24

0.170
= 7.3 μm 

Assume refractive index 𝑛𝑟 = 3.3 and a linewidth 2𝛾 = 30 meV 
we obtain the peak absorption coefficient 

𝛼 =
𝜔

𝑛𝑟𝑐𝜀0

𝜇21
2

𝛾
(𝑁1 −𝑁2) ≈ 1.015 × 10

4 cm−1 



Absorption in Superlattices 
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Superlattice 
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Absorption in a Superlattice (GaAs/Al0.3Ga0.7As) 

𝑤 = 𝑏 = 100Å 

Thick barriers 𝒃 
 

Small miniband widths 

𝑇 = 77K 

𝑁𝑠 = 2 × 10
11cm−2 

2𝛾 = 15 meV  
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Absorption in a Superlattice 

𝑤 = 100Å 
𝑏 = 20Å 

Thin barriers 𝒃 
 

Large miniband widths 

𝑇 = 77K 

𝑁𝑠 = 2 × 10
11cm−2 

2𝛾 = 15 meV  
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Absorption in a Superlattice 

𝑤 = 100Å 
𝑏 = 20Å 

Thin barriers 𝒃 
 

Large miniband widths 

𝑇 = 77K 

𝑁𝑠 = 2 × 10
11cm−2 

2𝛾 = 15 meV  
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Absorption in a Superlattice 

𝑤 = 40Å 
𝑏 = 300Å 

𝑇 = 77K 

𝑁𝑠 = 2 × 10
11cm−2 

2𝛾 = 15 meV  
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Experimental Subband 
Transition Examples 

[from Levine, J. Appl. Phys., 1993] 
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Quantum Cascade Laser (1994) 

QCL is an intersubband laser where electrons are injected by tunneling through the 
barrier into E3 (t3=0.2ps).  
 

Small overlap between E3 and E2 wavefunctions creates long decay time (t32=4.3ps) and 
thus a population inversion between states E3 and E2 for lasing action. 
 

Quick decay from E2 to E1 (t21=0.6ps). 

Al0.48In0.52As /Ga0.47In0.53As 

lattice matched to InP substrate 

barriers wells 
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Reading Assignments: 
 

Section 9.6 of Chuang’s book 
 
 
 


