ECE 536 – Integrated Optics and Optoelectronics Lecture 10 – February 16, 2022

Spring 2022

Tu-Th 11:00am-12:20pm Prof. Umberto Ravaioli ECE Department, University of Illinois

Lecture 10 Outline

 Optical Absorption-Gain in reduced dimensions (quantum wells, wires and dots)

Interband Absorption and Gain in Quantum Well

2-band model – we need to add the valence band

Interband Absorption and Gain in Quantum Well

(We neglect here exciton interactions between electrons and holes)

Starting with the general expression for the absorption coefficient

$$\alpha(\hbar\omega) = C_o \frac{2}{V} \sum_{\mathbf{k}_a} \sum_{\mathbf{k}_b} \left| \hat{e} \cdot \mathbf{p}_{ba} \right|^2 \delta(E_b - E_a - \hbar\omega) (f_a - f_b)$$

$$\mathbf{p}_{ba} = \langle \psi_b | \mathbf{p} | \psi_a \rangle = \int \psi_b^* \frac{\hbar}{i} \nabla \psi_a \, d^3 \mathbf{r}$$
$$= \int u_c^*(\mathbf{r}) \frac{e^{-i\mathbf{k}_t' \cdot \mathbf{r}}}{\sqrt{A}} \phi_n^*(z) \frac{\hbar}{i} \nabla \left(u_v(\mathbf{r}) \frac{e^{i\mathbf{k}_t \cdot \mathbf{r}}}{\sqrt{A}} g_m(z) \right) \, d^3 \mathbf{r}$$

$$\boldsymbol{I}_{hm}^{en} = \int_{-\infty}^{\infty} \phi_n^*(z) \ g_m(z) \ dz$$

overlap integral

Transition energies (all are relative to top of valence band)

Energy level of hole state (NOTE: it's negative)

Transition energies (all are relative to top of valence band)

$$E_{c} = E_{g} + E_{en} + \frac{\hbar^{2}k_{t}^{2}}{2m_{e}^{*}} - E_{hm} + \frac{\hbar^{2}k_{t}^{2}}{2m_{h}^{*}} = \frac{n}{2} = 1$$

$$= \left(E_{g} + E_{en} - E_{hm}\right) + \left(\frac{\hbar^{2}k_{t}^{2}}{2m_{h}^{*}} + \frac{\hbar^{2}k_{t}^{2}}{2m_{e}^{*}}\right)$$

$$= E_{hm}^{en} + E_{t}$$

$$E_{c} = \frac{m}{m} = 1$$

$$m = 2$$

$$E_{v}$$

$$E_{t} = \frac{\hbar^{2}k_{t}^{2}}{2m_{r}^{*}}$$

$$\frac{1}{m_{t}^{*}} = \frac{1}{m_{t}^{*}} + \frac{1}{m_{h}^{*}}$$

Band edge transition energy

Transverse kinetic energy due to in-plane k-vector ⁸

Absorption expression for quantum well case

$$\alpha(\hbar\omega) = C_o \frac{2}{V} \sum_{\mathbf{k}_a} \sum_{\mathbf{k}_b} \left| \hat{e} \cdot \mathbf{p}_{ba} \right|^2 \delta(E_b - E_a - \hbar\omega) (f_a - f_b)$$

- Summations over k_a and k_b become summations over k_t and k_t'
- The k-selection rule establishes $\mathbf{k}_t = \mathbf{k}_t'$ so the sum becomes a sum over \mathbf{k}_t
- We need to sum also over *m* and *n*

$$\alpha(\hbar\omega) = C_0 \sum_{n,m} \left| I_{hm}^{en} \right|^2 \frac{2}{V} \sum_{\mathbf{k}_t} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \delta\left(E_{hm}^{en} + E_t - \hbar\omega \right) \left(f_v^m - f_c^n \right)$$

Joint Density of States

$$\rho_r^{2D} = \frac{m_r^*}{\pi \hbar^2 L_z}$$

For an unpumped semiconductor in thermal equilibrium $f_{
u}^{\,m}=1$ $f_{c}^{\,n}=0$

$$\alpha(\hbar\omega) = C_0 \sum_{m,n} \left| I_{hm}^{en} \right|^2 \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \int_0^\infty \rho_r^{2D} \delta\left(E_{hm}^{en} + E_t - \hbar\omega \right) \left(f_c^m - f_c^n \right) dE_t$$

$$\boldsymbol{\alpha}_{0}(\hbar\boldsymbol{\omega}) = C_{0} \sum_{m,n} \left| I_{hm}^{en} \right|^{2} \left| \hat{\boldsymbol{e}} \cdot \mathbf{p}_{cv} \right|^{2} \rho_{r}^{2D} H(\hbar\boldsymbol{\omega} - E_{hm}^{en})$$

Optical Absorption Spectrum

$$\alpha_{0}(\hbar\omega) = C_{0} |\hat{e} \cdot \mathbf{p}_{cv}|^{2} \begin{cases} \frac{m_{r}^{*}}{\pi\hbar^{2}L_{z}} & \text{for } E_{h1}^{e1} < \hbar\omega < E_{h2}^{e2} \\ 2\frac{m_{r}^{*}}{\pi\hbar^{2}L_{z}} & \text{for } E_{h2}^{e2} < \hbar\omega < E_{h3}^{e3} \\ 3\frac{m_{r}^{*}}{\pi\hbar^{2}L_{z}} & \text{for } E_{h3}^{e3} < \hbar\omega < E_{h4}^{e4} \\ etc & etc \end{cases}$$

For the case of carrier injection

$$\alpha(\hbar\omega) = \alpha_0(\hbar\omega) \Big[f_v^m(\hbar\omega - E_{hm}^{en}) - f_c^n(\hbar\omega - E_{hm}^{en}) \Big]$$
$$= \alpha_0(\hbar\omega) \Big[f_v^m(E_t) - f_c^n(E_t) \Big]$$

Optical Absorption Spectrum

Electron Quasi Fermi Levels (when "n" electrons have been injected)

$$n = \sum_{\substack{n-occupied\\subbands}} N_n = \sum_n \int_0^\infty \rho_e^{2D} (E) f_c^n (E) dE$$

$$N_n = \int_0^\infty \rho_e^{2D} (E) f_c^n (E) dE = \frac{m_e^*}{\pi \hbar^2 L_z} \int_{E_{en}}^\infty f_c^n (E) dE$$

$$\int_{E_{en}}^{\infty} f_c^n(E) dE = \int_{E_{en}}^{\infty} \frac{1}{1 + e^{(E - F_c)/k_B T}} dE = -k_B T \ln\left(1 + e^{(F_c - E)/k_B T}\right)\Big|_{E_{en}}^{\infty}$$

$$N_{n} = \frac{m_{e}^{*}k_{B}T}{\pi\hbar^{2}L_{z}} \ln\left(1 + e^{(F_{c} - E_{en})/k_{B}T}\right) = n_{c} \ln\left(1 + e^{(F_{c} - E_{en})/k_{B}T}\right)$$

Electron Quasi Fermi Levels (when "n" electrons have been injected)

Holes Quasi Fermi level (when "p" holes have been injected)

$$p = n + N_{A}^{-} - N_{D}^{+} = \sum_{\substack{\text{occupied}\\\text{subbands}}} P_{m} = \sum_{\substack{\text{occupied}\\\text{subbands}}} \int_{-\infty}^{0} \rho_{h}^{2D} (E) \Big[1 - f_{v}^{m} (E) \Big] dE$$

$$P_{m} = \int_{-\infty}^{0} \rho_{h}^{2D}(E) f_{h}^{m}(E) dE = \frac{m_{h}^{*}}{\pi \hbar^{2} L_{z}} \int_{-\infty}^{E_{hm}} f_{h}^{m}(E) dE$$

$$\int_{-\infty}^{E_{hm}} f_h^m(E) dE = \int_{-\infty}^{E_{hm}} \frac{1}{1 + e^{-(E - F_v)/k_B T}} dE = k_B T \ln\left(1 + e^{(E - F_v)/k_B T}\right) \Big|_{-\infty}^{E_{hm}}$$

$$P_{m} = \frac{m_{h}^{*} k_{B} T}{\pi \hbar^{2} L_{z}} \ln \left(1 + e^{(E_{hm} - F_{v})/k_{B}T} \right) = n_{v} \ln \left(1 + e^{(E_{hm} - F_{v})/k_{B}T} \right)$$

Holes Quasi Fermi level (when "p" holes have been injected)

GaAs bulk example

Gain Spectrum

Zero Linewidth Case:

$$g(\hbar\omega) = C_0 \sum_{m,n} \left| I_{hm}^{en} \right|^2 \left| \hat{e} \cdot \mathbf{p}_{ev} \right|^2 \left[f_c^n(E_t) - f_v^m(E_t) \right] \rho_r^{2D} H(\hbar\omega - E_{hm}^{en})$$

$$C_o = \frac{\pi e^2}{n_r c \varepsilon_0 m_0^2 \omega} \qquad \qquad I_{hm}^{en} = \int_{-\infty}^{\infty} \phi_n^*(z) g_m(z) dz \qquad \qquad \rho_r^{2D} = \frac{m_r^*}{\pi \hbar^2 L_z}$$

$$f_c^n(E_t) = \frac{1}{1 + \exp\left[\left(E_g + E_{en} + \frac{m_r^*}{m_e^*}E_t - F_c\right)/k_BT\right]}$$

$$f_v^m(E_t) = \frac{1}{1 + \exp\left[\left(E_{hm} - \frac{m_r^*}{m_h^*}E_t - F_v\right)/k_BT\right]}$$

Gain Spectrum

$$g(\hbar\omega) = C_0 \sum_{m,n} \left| I_{hm}^{en} \right|^2 \int_0^\infty dE_t \rho_r^{2D} \left| \hat{e} \cdot \mathbf{p}_{ev} \right|^2 \frac{\gamma / \pi}{\left[E_{hm}^{en} + E_t - \hbar\omega \right]^2 + \gamma^2} \left[f_c^n \left(E_t \right) - f_v^m \left(E_t \right) \right]$$

Gain Spectra with and without broadening

Transition involving one single electron and hole subband pair

Transition involving two electron and two hole subbands

Comparison with experimental data

Zielinski et al, IEEE J. Quantum Electronics, QE-23, p.969 (1987).

Quantum Dots

Ideal quantum dot assumptions

- Uniform dot size
- Uniform distribution

Ideal Quantum Dot – Wave functions and Energies

Conduction Band – Wave functions and Energies

Wave Functions (Assume infinite barrier for simplicity)

$$\psi_{c}(x,y,z) = \frac{\sqrt{8}}{\sqrt{abc}} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \sin\left(\frac{l\pi}{c}z\right) u_{c}(\mathbf{r})$$

Energy eigenvalues

$$E_c^{mnl} = E_{c0} + \frac{\hbar^2}{2m_e^*} \left[\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{l\pi}{c}\right)^2 \right]$$

Electron Density

$$n = \frac{2}{V} \sum_{m,n,l} f_c(E) = N_{dot}^{3D} 2 \sum_{m,n,l} f_c(E_c^{nml}) = 2 \frac{N_{dot}^{2D}}{L_z} \sum_{m,n,l} \frac{1}{1 + e^{\left(\frac{E_c^{mml} - F_c}{E_c}\right)/k_B T}}$$

Valence Band – Wave functions and Energies

Wave Functions (Assume infinite barrier for simplicity)

$$\psi_{v}(x,y,z) = \frac{\sqrt{8}}{\sqrt{abc}} \sin\left(\frac{m'\pi}{a}x\right) \sin\left(\frac{n'\pi}{b}y\right) \sin\left(\frac{l'\pi}{c}z\right) u_{v}(\mathbf{r})$$

Energy eigenvalues

$$E_{v}^{m'n'l'} = E_{v0} - \frac{\hbar^2}{2m_h^*} \left[\left(\frac{m'\pi}{a} \right)^2 + \left(\frac{n'\pi}{b} \right)^2 + \left(\frac{l'\pi}{c} \right)^2 \right]$$

Hole Density

$$p = \frac{2}{V} \sum_{m',n',l'} \left(1 - f_{v}(E) \right) = N_{dot}^{3D} 2 \sum_{m',n',l'} \left(1 - f_{v}(E_{v}^{n'm'l'}) \right) = 2 \frac{N_{dot}^{2D}}{L_{z}} \sum_{m',n',l'} 1 - \frac{1}{1 + e^{\left(E_{v}^{m'n'l'} - F_{v}\right)/k_{B}T}}$$

$$p = 2 \frac{N_{dot}^{2D}}{L_z} \sum_{m',n',l'} \frac{1}{1 + e^{\left(F_v - E_v^{m'n'l'}\right)/k_B T}}$$

Interband Absorption Spectrum

General expression

$$\alpha(\hbar\omega) = C_o \frac{2}{V} \sum_{\mathbf{k}} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \delta(E_c - E_v - \hbar\omega) (f_v - f_c)$$

Quantization in all dimensions \rightarrow sum over m, n, l

$$\alpha(\hbar\omega) = C_o \frac{2}{V} \sum_{m,n,l} \sum_{m',n',l'} \left| \left\langle \psi_c \middle| \hat{e} \cdot \mathbf{p} \middle| \psi_v \right\rangle \right|^2 \delta\left(E_c^{mnl} - E_v^{m'n'l'} - \hbar\omega \right) (f_v - f_c)$$

$$\left| \left\langle \psi_c \middle| \hat{e} \cdot \mathbf{p} \middle| \psi_v \right\rangle \approx \left\langle u_c \middle| \hat{e} \cdot \mathbf{p} \middle| u_v \right\rangle \delta_{mm'} \delta_{nn'} \delta_{ll'} = \hat{e} \cdot \mathbf{p}_{cv} \delta_{mm'} \delta_{nn'} \delta_{ll'}$$

$$\Rightarrow \alpha(\hbar\omega) = C_o \frac{2N_{dot}^{2D}}{L_z} \sum_{m,n,l} |\hat{e} \cdot \mathbf{p}_{cv}|^2 \delta(E_c^{mnl} - E_v^{mnl} - \hbar\omega)(f_v - f_c)$$

with Interband Transition Energies

$$E_{cv}^{mnl} = E_{c}^{mnl} - E_{v}^{mnl} = E_{g} + \frac{\hbar^{2}}{2m_{r}^{*}} \left[\left(\frac{m\pi}{a} \right)^{2} + \left(\frac{n\pi}{b} \right)^{2} + \left(\frac{l\pi}{c} \right)^{2} \right]$$

Absorption – Homogeneous Broadening

In case of no carrier injection, we can approximate $f_{m v}=1$ $f_{m c}=0$

For homogeneous broadening, the <u>delta function can be replaced</u> by a Lorentzian

$$\alpha_{0}(\hbar\omega) = C_{0} \frac{2N_{dot}^{2D}}{L_{z}} \sum_{m,n,l} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^{2} L\left(E_{cv}^{mnl} - \hbar\omega\right)$$
$$L\left(E - \hbar\omega\right) = \frac{\gamma/\pi}{\left(E - \hbar\omega\right)^{2} + \gamma^{2}}$$

With carrier injection

$$\alpha(\hbar\omega) = C_0 \frac{2N_{dot}^{2D}}{L_z} \sum_{m,n,l} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 L \left(E_{cv}^{mnl} - \hbar\omega \right) \left(f_v - f_c \right)$$

Absorption – Inhomogeneous Broadening

For uniform dots we had:
$$n = 2 \frac{N_{dot}^{2D}}{L_z} \sum_{m,n,l} f_c(E_c^{mnl})$$

In realistic case we will have variations of quantum dot size. Dot energy level become a Gaussian distribution with

$$G(E) = \frac{1}{\sqrt{2\pi\sigma_c}} e^{-\left(E - E_c^{mnl}\right)^2 / 2\sigma_c^2} \begin{cases} \text{mean} = E_c^{mnl} \\ \text{FWHM} = 2\sqrt{2\ln 2\sigma_c} \approx 2.35\sigma_c \end{cases}$$

carrier density
$$n = 2\frac{N_{dot}^{2D}}{L_z} \sum_{m,n,l=0}^{\infty} dE \ G(E) f_c(E)$$

$$\alpha(\hbar\omega) = C_0 \sum_{m,n,l} \int_0^\infty dE \left| \hat{e} \cdot \mathbf{p}_{ev} \right|^2 D(E) L(E - \hbar\omega) (f_v - f_c)$$
$$D(E) = 2 \frac{N_{dot}^{2D}}{L_z} \frac{1}{\sqrt{2\pi\sigma}} e^{-(E - E_{ev}^{mnl})^2/2\sigma^2} \qquad \sigma^2 = \sigma_c^2 + \sigma_v^2$$

Examples = Homogeneous Broadening FWHM = 30 meV

Examples = Homogeneous +Inhomogeneous Broadening FWHM = 30 meV FWHM = 50 meV

Examples = Homogeneous +Inhomogeneous Broadening FWHM = 30 meV FWHM = 50 meV

Quantum Wires

Ideal Quantum Wire – Wave functions and Energies

Density of States

Density of state in a 1-D wire quantized along the x and y directions

$$\rho_{e}^{1D}(E) = \sum_{m,n} \frac{1}{\pi} \sqrt{\frac{2m_{e}^{*}}{\hbar^{2}}} \frac{1}{\sqrt{E - E_{c}^{mn}}} \quad \text{for } E > E_{c}^{mn}$$

Absorption coefficient

$$\alpha(\hbar\omega) = C_0 N_{wr} \sum_{m,n} \left| \hat{e} \cdot \mathbf{p}_{cv} \right|^2 \rho_r^{1D} \left(\hbar\omega - E_c^{mn} \right) \left(f_v - f_c \right)$$

joint density of states

$$\rho_r^{1D} \left(\hbar \omega - E_c^{mn} \right) = \frac{1}{\pi} \sqrt{\frac{2m_r^*}{\hbar^2}} \frac{1}{\sqrt{\hbar \omega - E_c^{mn}}}$$

$$E_{cv}^{mn} = E_g + \frac{\hbar^2}{2m_r^*} \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right]$$

Absorption coefficient

Gain coefficient

Two-dimensional quantum confinement in quantumwire (QWR) semiconductor lasers is expected. in principle, to yield improved static and dynamic performance compared to conventional quantum-well (QW) lasers.

The improved features could include very low threshold currents (in the microampere regime), reduced temperature sensitivity, higher modulation bandwidth, and narrower spectral linewidth.

M. Asada, Y. Miyamoto, and Y. Suematsu, Gain and Threshold of Three-Dimensional Quantum-Box Lasers, *IEEE J. Quantum Electron* **QE–22**, 1915–1921 (1986).

Intersubband Absorption

Transition between ground state and first excited state

 $\psi_{a}(\mathbf{r}) = u_{c}(\mathbf{r}) \frac{e^{i\mathbf{k}_{t}\cdot\boldsymbol{\rho}}}{\sqrt{A}} \phi_{1}(z)$ $\psi_{b}(\mathbf{r}) = u_{c'}(\mathbf{r}) \frac{e^{i\mathbf{k}_{t}'\cdot\boldsymbol{\rho}}}{\sqrt{A}} \phi_{2}(z)$

transverse momenta

 $\mathbf{k}_{t} = k_{x}\hat{x} + k_{y}\hat{y}$ $\mathbf{k}_{t}' = k_{x}'\hat{x} + k_{y}'\hat{y}$

position vector $\boldsymbol{\rho} = x\hat{x} + y\hat{y}$

Intersubband Absorption Spectrum

initial state
$$E_a = E_1 + \frac{\hbar^2 k_t^2}{2m_e^*}$$
 final state $E_b = E_1 + \frac{\hbar^2 k_t^2}{2m_e^*}$

$$\alpha(\hbar\omega) = \left(\frac{\omega}{n_r c \varepsilon_0}\right) \frac{2}{V} \sum_{\mathbf{k}_r} \sum_{\mathbf{k}'_r} \frac{\left|\hat{e} \cdot \boldsymbol{\mu}_{ba}\right|^2 \gamma}{\left(E_b - E_a - \hbar\omega\right)^2 + \gamma^2} (f_a - f_b)$$

$$= \left(\frac{\omega}{n_r c \varepsilon_0}\right) \frac{\left|\boldsymbol{\mu}_{21}\right|^2 \gamma}{\left(E_2 - E_1 - \hbar\omega\right)^2 + \gamma^2} \frac{2}{V} \sum_{\mathbf{k}_r} (f_a - f_b) = \left(\frac{\omega}{n_r c \varepsilon_0}\right) \frac{\left|\boldsymbol{\mu}_{21}\right|^2 \gamma}{\left(E_2 - E_1 - \hbar\omega\right)^2 + \gamma^2} (N_1 - N_2)$$

intersubband dipole moment

$$\boldsymbol{\mu}_{21} = \left\langle \phi_2 \right| ez \left| \phi_1 \right\rangle = \int \phi_2^* \left(z \right) ez \phi_1 \left(z \right) dz$$

electrons per unit volume in nth subband

$$N_n = \frac{m_e^* k_B T}{\pi \hbar^2 L_z} \ln \left[1 + e^{\left(E_F - E_n\right)/k_B T} \right]$$

low temperature
$$(E_F - E_n) \gg k_B T$$

$$N_n = \frac{m_e^*}{\pi \hbar^2 L_z} (E_F - E_n)$$

1

Intersubband Absorption Spectrum

Using the two previous results

$$\alpha(\hbar\omega) = \left(\frac{\omega}{n_r c\varepsilon_0}\right) \frac{\left|\boldsymbol{\mu}_{21}\right|^2 \gamma}{\left(E_2 - E_1 - \hbar\omega\right)^2 + \gamma^2} \left(N_1 - N_2\right)$$
$$N_n = \frac{m_e^*}{\pi \hbar^2 L_z} \left(E_F - E_n\right)$$

$$\alpha(\hbar\omega) = \left(\frac{\omega}{n_r c\varepsilon_0}\right) \frac{\left|\boldsymbol{\mu}_{21}\right|^2 \gamma}{\left(E_2 - E_1 - \hbar\omega\right)^2 + \gamma^2} \left(\frac{m_e^*}{\pi\hbar^2 L_z}\right) \left(E_2 - E_1\right)$$

INTEGRATED ABSORBANCE

$$A = \int_{0}^{\infty} \alpha(\hbar\omega) d(\hbar\omega) \simeq \left(\frac{\omega_{21}}{n_{r}c\varepsilon_{0}}\right) \left|\mu_{21}\right|^{2} \pi\left(N_{1}-N_{2}\right)$$

Example – Peak absorption coefficient in QW

Consider a GaAs quantum well of width $L_z = 100$ Å, doped *n*-type corresponding to a 3D carrier concentration $N = 10^{18} \text{ cm}^{-3}$. The electron effective mass is $m_e^* = 0.0665m_0$. Let's assume a simple infinite barrier model and T = 300K.

Assume the number of electrons per unit volume (3D density) occupy only the first subband and the 2nd subband is empty

$$N_{2D} = \frac{m_e^* k_B T}{\pi \hbar^2} = 7.19 \times 10^{11} cm^{-2} \qquad L_z = 100 \text{ Å} = 10^{-6} \text{ cm}$$
$$N_1 = \frac{m_e^* k_B T}{\pi \hbar^2 L_z} \ln\left(1 + \exp\left(\frac{E_F - E_1}{k_B T}\right)\right) = \frac{N_{2D}}{L_z} \ln\left(1 + \exp\left(\frac{E_F - E_1}{k_B T}\right)\right) \approx 10^{18} \text{ cm}^{-3}$$

This is satisfied for

$$(E_F - E_1) \approx 0.0283 \text{ eV} = 28.3 \text{ meV}$$

Now, calculate the density N_2 with this Fermi level, to verify that $N_2 \ll N$

$$N_2 = \frac{N_{2D}}{L_z} \ln\left(1 + \exp\left(\frac{E_F - E_2}{k_B T}\right)\right) = 2.9 \times 10^{15} \text{cm}^{-3} \qquad E_2 \qquad 226 \text{ meV}$$

It is indeed $N_2 \ll N$. Otherwise, we would need to use the expression for $N_1 + N_2 = N$ to determine numerically the Fermi level.

We can calculate now the dipole moment

$$\mu_{21} = e \int_0^{L_z} \varphi_2(z) \, z \, \varphi_1(z) \, dz = e \frac{2}{L_z} \int_0^{L_z} z \, \sin\left(\frac{\pi}{L_z}z\right) \sin\left(\frac{2\pi}{L_z}z\right) dz =$$

$$= e \frac{2}{L_z} \left[-\frac{8L_z^2}{9\pi^2} \right] = -\frac{16}{9\pi^2} e L_z = -18.013 e \text{ Å} = -2.882 \times 10^{-28} \text{C} \cdot \text{m}$$

Resources for symbolic manipulation can be very handy to evaluate integrals with complicated trigonometric functions

definite integral				E
∫₽ Extended Keyboard	单 Upload		🔛 Examples	🗙 Random
Assuming "definite int or a word instead	egral" refers to a computation l	lse as a general topic or refe	rring to a mathemati	cal definition
Computational Inputs	:			
» function to integrate:	x sin(pi x/a) sin(2 pi x/a)			
» variable:	x			
» lower limit:	0			
» upper limit:	a			
Compute				
Definite integral:			Step-by	step solution
$\int_0^a x \sin\left(\frac{\pi x}{a}\right) \sin\left(\frac{2\pi}{a}\right)$	$\left(\frac{x}{2}\right)dx = -\frac{8a^2}{9\pi^2}$			

The peak absorption occurs for a photon energy

$$\hbar\omega \approx E_2 - E_1 = 169.4 \text{ meV}$$

with corresponding peak wavelength

$$\lambda \approx \frac{1.24}{0.170} = 7.3 \ \mu m$$

Assume refractive index $n_r = 3.3$ and a linewidth $2\gamma = 30$ meV we obtain the peak absorption coefficient

$$\alpha = \frac{\omega}{n_r c \varepsilon_0} \frac{|\mu_{21}|^2}{\gamma} (N_1 - N_2) \approx 1.015 \times 10^4 \text{ cm}^{-1}$$

Absorption in Superlattices

Superlattice

Absorption in a Superlattice (GaAs/Al_{0.3}Ga_{0.7}As)

Absorption in a Superlattice

Absorption in a Superlattice

Absorption in a Superlattice

$$T = 77K$$
$$N_s = 2 \times 10^{11} \text{cm}^{-2}$$
$$2\gamma = 15 \text{ meV}$$

$$w = 40\text{\AA}$$
$$b = 300\text{\AA}$$

Experimental Subband Transition Examples

GaAs QW Al_xGa_{1-x}As Barrier

[from Levine, J. Appl. Phys., 1993]

A, B, C have weak absorption but good carrier collection

E has the best absorption but doesn't have good carrier collection

F has good absorption and carrier collection

Quantum Cascade Laser (1994)

QCL is an **intersubband** laser where electrons are injected by tunneling through the barrier into E_3 (t_3 =0.2ps).

Small overlap between E_3 and E_2 wavefunctions creates long decay time (t_{32} =4.3ps) and thus a population inversion between states E_3 and E_2 for lasing action.

Quick decay from E_2 to E_1 (t_{21} =0.6ps).

Reading Assignments:

Section 9.6 of Chuang's book