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Effective Index Method



Preamble: Rectangular dielectric waveguides

The rectangular dielectric waveguide is most commonly used
in integrated optics, especially in semiconductor diode lasers
and in optical components used to process optical signals.

Unlike the planar slab waveguide or the circular fiber, it is in
general impossible to find analytical solutions. (Note: in the
following we will focus mainly on the fundamental mode).
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Rectangular dielectric waveguides

The classical method used in metal waveguides decomposes the
solution for modes on the cross-section into two orthogonal
ones. Because of the simple nature of the (ideal) metal
boundaries, this method is exact.

This is not as easy to apply in the case of dielectric waveguides,
since nine separate regions are needed.

solutions have to be matched at all interfaces
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Rectangular dielectric waveguides

Marcatili (1969) solves the problem with two crossing slabs ignoring corner regions
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In the core, solutions have the form

X(z) = Acos(ksZ + ¢z)
Y{y) = Beos(ryy + ¢y)




Rectangular dielectric waveguides

Simplified case , ‘x
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Rectangular dielectric waveguides

Even for the simplest symmetry, this decomposition process
involves lengthy and tedious derivations of characteristic
equations in order to determine, in the different regions, the
propagating and evanescent components of the wave vectors.

The decomposition leads to solutions which are reasonable in
the high frequency limit but increasingly inaccurate when
approaching the cut-off.

4
normalized frequency g [X
D 6 — T n1
[ 9 | - _bL e
= .
V — k[] 2 ﬂ'l n2 5 0.4 - |<—a—>
® -
b = smaller core dimension e 02+
n, = core index u.E -
n, = next smaller index - 0 } } —
g _ .7 08 1.2 1.6
normalized propagation vector £ -0.2[ . \ V-parameter
,62 k2ﬂ2 2 - _ _
e 0 2 04 - negative values unphysical

kn nl kn '”2



Rectangular dielectric waveguides

The decomposition method tends to be sufficiently accurate for
values of the normalized frequency V > 2.

A perturbative correction step could be applied to improve the
solution, leading to results that are acceptable for IV > 0.7
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Rectangular dielectric waveguides

The main problem with the decomposition approach is in the
fact that decoupling between the x and y orthogonal solutions
does not hold well at the corner regions, particularly when
evanescence is strong at lower frequencies.
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Effective index method

This method attempts to improve accuracy within a simple
decomposition framework by including some coupling.
Typically the evaluation pertains to the fundamental mode.

Example:
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Effective index method

As before, the effective index method transforms a single 2D
problem into two 1D problems. It is similar to the previous
decomposition method but interaction between the horizontal

and vertical waveguides is included.
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The 1D horizontal waveguide is analyzed in terms of
TE or TM modes to find the allowed propagation
vector B’ for the mode of interest at a given
wavelength.  When the index difference between
core and cladding is very small (n;/n, = 1) many
authors have used the TE dispersion relation as an
approximation for the TM polarization one.

Once B’ is determined, the effective
index of the vertical slab is found as

_F
Neff = ko

( ko= wave vector in vacuum )12




Effective index method

After the effective index is determined, we solve for the modes
in the slab waveguide stretched along the x-direction using the
effective index n, s instead of the original value n;.

Best accuracy for aspect ratio width/height = 3. This means
the method is not very good for square waveguides. We also
need to be careful to use the proper characteristic equation (TE
or TM) for each 1D slab waveguide.
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Effective index method

After the effective index is determined, we solve for the modes
in the slab waveguide stretched along the x-direction using the
effective index n, s instead of the original value n;.

Best accuracy for aspect ratio width/height = 3. This means
the method is not very good for square waveguides. We also
need to be careful to use the proper characteristic equation (TE
or TM) for each 1D slab waveguide.
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Example of effective index method application

Rectangular buried optical waveguide

Typical range of interest for optical applications
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Examples of effective index method application

First step: Analyze the structure as if it were a 5um thick slab
waveguide. Since the electric field is oriented along y, the mode
can be analyzed as TE for the thin dimension.

The transverse wavevector x, is found for the wavelength range
of interest using a form of the characteristic equation
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An effective index is assigned to each wavevector value

Neff = \/ kgnt — K2 /ko
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Examples of effective index method application

Second step: Using the values of n.s¢, the transverse wavevectors

K, are found for the second slab waveguide of thickness a using a

form of the characteristic equation for TM modes:
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The propagation coefficient along the axis of the waveguide z for

this structure is the approximate eigenvalue of the propagation
problem for the full structure and it is found from

B = \/kﬂnﬂff — K
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Examples of effective index method application

Comparison: Results can be compared to the other approaches
illustrated earlier by normalizing the values of f§ using the actual
values of the indices in the waveguide
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Examples of effective index method application

Comparison: For this case the effective index method is the only
one which predicts the existence of a mode at low values of V. Its
application, however, is stretching the limits since the aspect ratio
of the waveguide is only 2 (at least 3 is needed for good accuracy)
and f is slightly overestimated.

Around V = 1 the perturbation theory correction would give the
best results.
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Example of effective index method application

Ridge optical waveguide
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Example of effective index method application

Ridge optical waveguide

If w,.is large enough one may ignore
that the ridge has finite extent and
consider it as this slab, which has
modes with propagation constant £,
associated with effective refractive

index 1 o = Br/ko
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The smaller slab is calculated in the
same way ignoring the ridge, and it
has propagation constant [
associated with effective refractive
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Example of effective index method application

Ridge optical waveguide Finally, we obtain the equivalent slab used for

computing the ridge waveguide.
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Example of effective index method application

With d; — 0 we recover the rectangular waveguide
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In case of an asymmetric slab configuration, the methodology remains
essentially the same, but the asymmetric versions of the dispersion relations

are used. >
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Quantum Well Lasers
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Types of QW Lasers

(@) Single-Quantum-Well Separate-
Confinement Heterostructure

U
1

(b) Multiple-Quantum-Well Separate-
Confinement Heterostructure

LU
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(¢) Graded-Index Separate-Confinement
Heterostructure (GRINSCH)
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(parabolic bands)
<>Simplified Gain Model (Chuang — Section 9.4)

Zero - Linewidth Gain Spectrum :

g(ho)=C,Y|1[ e[| 17 (ho-Ex)- 17 (ho- Ex) |p2°H (o - E})
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Simplified Gain Model (Chuang — Section 9.4)

( interband transitions between conduction band and valence band)

Z.ero - Linewidth Gain S&ectrum :
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Simplified Gain Model (Chuang — Section 9.4)

( interband transitions between conduction band and valence band)

Zero - Linewidth Gain Spectrum :
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Simplified Gain Model (Chuang — Section 9.4)

(a) A Normalized gain one occupied electron subband
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Simplified Gain Model (Chuang — Section 9.4)

(b)

‘ NOI‘mali zcd gain two occupied electron subbands
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Interband Momentum Matrix Element (Chuang — Section 9.5)

For bulk : <

2
eeM \ >=<
c—hh
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[ This quantity 1s independent of the polarization of the light. ]
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For a quantum well there is polarization dependence for the gain.

Electron wave vector in spherical coordinates
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Interband Momentum Matrix Element (Chuang — Section 9.5)

Momentum Matrix Elements, TE Polarization (é =X G j’):
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Interband Momentum Matrix Element (Chuang — Section 9.5)

Momentum Matrix Elements, TM Polarization (é = f):
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Gain Spectrum in a QW Laser(Chuang — Section 9.8)
L,=6nm InGaAs/InGaAsP QW lattice matched to InP

p-doped InP

InGaAs QW
SCH structure

n-doped InP buffer layer
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Gain Spectrum in a QW Laser(Chuang — Section 9.8)
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Reading Assighments:

Sections 10.1 and 10.2 of Chuang’s book



