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* Semiconductor Optical Amplifiers
* Integrated Optics Simulation Approaches
* Transmission Matrix Method



Semiconductor Optical
Amplifier (SOA)



Basic Characteristics of SOA

* SOAs are typically optical active regions in a
semiconductor that are used without any optical
feedback.

* An optical signal input experiences gain through
stimulated emission.

 Spontaneous emission is added to the signal and
then amplified through stimulated amplification
while propagating in the structure.



Basic Characteristics of SOA

* Noise is added by spontaneous emission and
amplified spontaneous emission

e Carrier density and gain are nor clamped if
there is no feedback in the cavity. Larger
fraction of carriers recombine through
spontaneous emission, compared to a laser.

* SOAs are use mainly for photonic integration,
but discrete SOAs also exist.
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Item # SOA1013SXS BOA1004PXS
Operating Wavelength 1528 - 1562 nm 1500 - 1600 nm
Optical Isolation (P / POUT)h 242 dB =40 dB
Extinction Ratio® 60 dB 70 dB
Switching Speed 1ns 1ns

Max Output Power

for CW Input Signal L el ez
Max Output Power

for Modulated Input Signal EllE ez

a. Typical values. For complete specifications, please see Specs tab.

b. At 0 mA and 1550 nm
c. At P,N = -20 dBm and 1550 nm




SOA

Four important parameters characterize the performance of SOA:
* Signal gain

* Frequency bandwidth

e Saturation output power

* Noise figure

The measured signal gain of an SOA, in decibels, is given by
G =10 1*?.'LE| Pout/ Pin |

If it refers to a single light path from input to output (Travelling
Wave Amplifier, TWA) the resulting gain is known as “single pass
gain” G = G,. If positive feedback is provided by reflections from
end-facets (Fabry-Pérot amplifier)

G*; Fg = proportion of output signal

— : fed back to the input
| + FpGs e



SOA

The signal gain of an optical amplifier is limited by a finite range of

input and output power. Experimentally, once the input power is
increased to a certain level, the gain starts to drop.

material gain coefficient unsaturated value of g,,

Gs =exp(gml) = explgoL /(1 + Iout/Isar)]

output light intensity T

saturation output intensity

The pumping source creates a fixed amount of population inversion.
As we increase the input power, as some point the rate of draining

due to amplification is greater than the rate of pumping and the
population inversion level starts to fall.

Gain saturation simply arises because of conservation of energy.



SOA Gain (Section 8.2.5 in Coldren, Corzine and MasSanovic¢)

Gain of an SOA of Length L :

[e(N)L
Gﬂ=eg( )

Rate Equation :
dN nlI N I,gp
dt qV 1 wd hv

(V is volume of active region)

Steady State:

dN _,

dt

dN nl N _ 0
dt gV 7
N=N,

nl _ N,

gV T

I:,in
—>
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SOA Gain

At low optical powers : dN ~ nt _ N —0
N=N =—"—
1 4 N=N,
nit ] 1l N
gO =a(N_NIr)=a Tll _Ntr nl — ?
(q V) gV 7
differential - B
gain
At large input / output powers, stimulated emission is included :
It I,grt It
N w8t P >gzwafhv Ty
qV wd hv [, TP\ gV
g, wdhv _
g= and P. = (P typically 1-20 mW, depends upon F)

N
1+P/P aljj. T [QW SCH]
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SOA Amplifier Response

Net Amplifier Response :

Integrate over gain length for amplifier response:

-1
P 1 1
@ =gP = at P=go[ i }

dz 1+ P/ P P P

(G = P(_L — PO”’” =G exp| — G-1 PO large signal gain
po) P, "7 G P

G, = e®" = e®" is the unsaturated gain when P<P
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SOA Amplifier Response

Proof :

J(%—k%}szJ‘gOdz

5

m(@} P -PO) _
P(0) P

goL
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SOA Amplifier Response

Output Saturation Power :

The output saturation power P 1s defined as the power

that causes the gain G to drop to half of G :

G =G, exp

G-1F,

o.sat

G

G, In2
= P

o.,sat o (J*ro _ 2 S

P

S

1

-
~G,
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SOA Noise Figure :

g L=-5) g

F, =2n | —— |=2 (typically ~5dB)

g L=71 \g—a

(Neglecting facets feedback)

Saitoh T, Mukai T. Traveling-wave semiconductor laser amplifiers. In: Yamamoto Y,
editor. Coherence, amplification and quantum effects in semiconductor lasers. New York:
Wiley: 1991. Chapter 7.

For photonic integrated circuits including optical receivers, SOAs
should not have polarization dependence. Structures needs to
be designed for gain and optical confinement factors are similar
for TE and TM modes.

Inclusion of strain in the active region is an approach commonly
used to achieve this.
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Famous application of optical amplifiers: Erbium-doped fiber

Er**-doped fiber

Faraday dichroic dichroic Faraday
isolator pump pump isolator
coupler coupler

LD LD
980 nm 980 nm

Schematic setup of a simple erbium-doped fiber amplifier. Two laser diodes (LDs) provide
the pump power for the erbium-doped fiber. The pump light is injected via dichroic fiber
couplers. Pig-tailed optical isolators reduce the sensitivity of the device to back-reflections.

https://www.rp-photonics.com/erbium_doped_fiber _amplifiers.html 16



Erbium-doped fiber example
400 mW pump power at 980 nm from each side
1 mW input signal power. Amplified Spontaneous Emission is included
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Figure 1: Power distribution in the fiber.

https://www.rp-photonics.com/fiberpower_edfa.html



Erbium-doped fiber example

Backward ASE is significantly stronger at short wavelengths. This is the usual

case for erbium doped fiber amplifiers (quasi-three-level gain medium).
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Figure 2: Spectrum of the amplified spontaneous emission (ASE).

https://www.rp-photonics.com/fiberpower_edfa.html
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Erbium-doped fiber example
In the quasi-three-level gain medium the lower laser level is so close to the

ground state that there is always a population in thermal equilibrium. The

unpumped gain medium causes some reabsorption loss at the laser
wavelength, so that transparency is reached only for some finite pump

intensity

pump

laser

3-level

https://www.rp-photonics.com/four_level _and_three_level gain_media.html

PUmp

laser

Y

4-level

pump

laser

Y

*

qguasi-3-level
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Erbium-doped fiber example

1 | 1 I 1 I 1 ' | | !

gain (a. u.)

1460 1480 1500 1520 1540 1560 1580 1600 1620 1640
wavelength (nm)

Gain and absorption (negative gain) of erbium (Er3*) ions in germano-alumino-silicate
glass for excitation levels from 0 to 100% in steps of 20%. Strong three-level behavior (with trans-
parency reached only for > 50% excitation) occurs at 1530 nm. At longer wavelengths (e.g.

1580 nm), a lower excitation level is required for obtaining gain, but the maximum gain is smaller.

https://www.rp-photonics.com/four_level _and_three_level gain_media.html 20



Erbium-doped fiber example

The amplifier gain is reduced for high input power levels. Curves are shown for

pump powers of 100 mW to 500mW from each side.
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Figure 3: Saturation characteristics.

https://www.rp-photonics.com/erbium_doped_fiber _amplifiers.html
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Erbium-doped fiber example

Dependence of amplifier output signal power on fiber length, which appears not
to be a critical parameter for the power efficiency.
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Figure 4: Variation of the fiber length.

https://www.rp-photonics.com/erbium_doped_fiber _amplifiers.html =



Erbium-doped fiber example
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Figure 5: Gain and noise figure as functions of pump power for a signal input power of 1T mW.

https://www.rp-photonics.com/erbium_doped_fiber _amplifiers.html 23



Most popular numerical simulation approaches
for optical waveguide devices

Full solution of Maxwell’s equations:
Finite-Differences Time-Domain (FDTD) Method

Approximate EM solution techniques for light propagation in
slowly varying waveguides

Beam Propagation Method

Scattering formalism (Transmission Line)
Transmission Matrix Method

24



Maxwell’s Equation
V x E(r,1) = —0d,B(r, 1),
V x H(r,t) = oD(r.t) + J(r.1).
V- D(r,1) = p(r., 1),
V-B(r.r) =0.
Simple case of linear, isotropic, and non-dispersive medium
D(r.7) = goe(r)E(r. 1),

B(r.7r) = you(r)H(r, 7).

25



Finite Differences Time Dependent (FDTD)

=

E.

(i+17k+4)

/ The Yee grid in 3D — Uniform mesh (0x = 0y = 0z = h)

Tt

26



Finite Differences Time Dependent (FDTD)

 Components of the electric fields are defined in the middle of
the edges of the cube

 Components of the magnetic field are defined in the centers
of the cube faces

* Time discretization: leapfrog scheme with time step 6t

n+1,2 1—1/2 n _ "
.. E i E: ' ] HE+];"2 He'— 112
Electric Field - — — )

Ot E0&; h

ot

heoe;

(H]

i+1,2

—H ).
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Finite Differences Time Dependent (FDTD)

n+l g n+1/2 12
Magnetic Field Hicip = Hip _ I EL T -ET
o Hollivi,2 h
Hn+1 — 4" Ot (E”_Hﬂ E”"‘lfz)
2 T L2 h . i+1 T 5 :
HoMiy1,2
t A
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Finite Differences Time Dependent (FDTD)

12 el ot H i pjviox = Helliipjoion
I|:’+l,111;',k — I|:+l”1:i - X Y
E0€iv1/2,k OV
H |r+|“2,‘.|i+l H |I+lf"',_;.{
0Z
Similar discretization for y and z
Ot
n+1 S
H-1'|:'.J'+1,.*2.k+l,ﬂ H |rJ+l’7k+|“2 +
HoHyj+1/2k+1,2
n+1,/2 n+l1,/2 n+1,2 n+1/2
ET|£,_,|"+I,’1J;+] - E‘F|£J’+lflk E; ij+Lk+1/2 — EE|E.J'..!:+I,IE

bz oy

Similar discretization for y and z

Example of discretization
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Finite Differences Time Dependent (FDTD)

Bl = B+ 2 (1,

xijk — -
iy, "C-EJ,.&

0

H’ H!

H
nijk  Ttnij-lk  Twijk + Hl':f.“.i,k—l) :

m+1 __ nm n n n H
E\':EJ,E — Ew:aj,k + , (Hr:fur',.i; o Hr;a’J,k—l R Hz;aj,k + HE:E—IJ,E) ’

Sijk

+1 Q n ] n n
E::fj,k - Ez;fj.k + . (H viijk H‘r;f—lJ,k o Hr;a'J,k + Hx:fh.f—l,k) »

t'!-?_,l;,.ii -
n+l g g( n+l  pn+l  pmsl n+])
H‘{';EJ,A‘ o er:f.“.i,k + Wik Ev:fJ,A‘H E_x';a'j,i.' Ez:a'j+1,k + Ez:i.“.f.k 3
i.f,

Hn+] — H!?;j,u,i,k + g (En+| . En_+1 L En.+] 4 E::—:-Jlk) _,

vii .k 3 ni+lgk e W Xijk+1
Hijk

HEf = Byt~ (B~ Bl — il 4 EL)

zijk Xij+ 1k ik
ik

~ E _ : i
Scaling E = — Uniform mesh (0x = 0y = dz = h) 0=
Mo



Beam Propagation Method (BPM)

Approximate simulation technique for light propagation in slowly

varying optical waveguides

Helmholtz equation

Electric Field
9° 9*
V=
ox? i oy?

”E &E &E ., ,
E-l-'a}?-f-a—zi-l-kﬂ(.r,y,Z)E:O

slowly varying term rapidly varying term

v \

E(x,y,z7) =d(x,y, z) exp(—jknyz).

cladding index

J
Vibh— janDa—i’ + i (n* —nd)d =0,
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Beam Propagation Method (BPM)

Assuming weakly guiding condition

(n* — nd) = 2 ng (n—ny)

9
Vi — jlknﬂa—i) + k(0 = n})d =0,

|

1) 1

B P v '

9z 2 kg ¢ — jk(n—ny)d
free-light guidance term

propagation term
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Beam Propagation Method (BPM)

The two terms are applied separately
Approximation with BPM step

:\4‘(!. Z] E
| a

#{x, 2+h) #(x, Z+h)

NY

VW///////////%

(b) be— h/2 —vfe— h/2 —+|

(a) - h

* The electric field @ (x, z) is first propagated freely in index n, over a distance h/2.
* Phase retardation of the entire length h is taken into account at the center of the interval
* The resulting electric field is propagated again freely in index n, for another distance h/2

to obtain ¢(x,z + h)
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Beam Propagation Method (BPM)

An extensive theoretical reference for BPM is Chapter 7 of

K. Okamoto, “Fundamentals of Optical Waveguides”
Elsevier (2006)

(Available for download from the digital library)

Some representative examples follow

34



Beam Propagation Method (BPM) - Examples

S-shaped bent waveguide without offset.
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Beam Propagation Method (BPM) - Examples
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Figure 7.12 BPM simulation of the light propagation in an S-bend waveguide consisting of a
fixed radius of curvature without offset.
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Beam Propagation Method (BPM) - Examples
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Figure 7.13 S-shaped bent waveguide with a waveguide offset.
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Beam Propagation Method (BPM) - Examples

38

Figure 7.14 BPM simulation of the light propagation in an S-bend waveguide having an offset of

O;=14pm.



Beam Propagation Method (BPM) - Examples

Figure 7.15 Schematic configuration of a Y-combiner  Figure 7.16 BPM analysis of single-mode Y-combiner when
consisting of single-mode waveguides. when light is coupled into one of the two waveguides.
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Beam Propagation Method (BPM) - Examples

80

Yy (Lm)

0 2 4 6 8 10 12 14 16 18 20 22
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Figure 2: Refractive index profile of a fiber coupler.

https://www.rp-photonics.com/passive_fiber_optics8.html 20



Beam Propagation Method (BPM) - Examples

_80 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

z (mm)

Figure 3: Amplitude distribution in a fiber coupler, obtained with a numerical simulation of beam
propagation, done with the software RP Fiber Power.

https://www.rp-photonics.com/passive_fiber_optics8.html "



Transfer Matrix Method

Sections 3.1-3.5 in Coldren, Corzine and Masanovic



Definition of the Scattering Matrix

Linear Networks S allows you to find outputs from inputs

Inputs: a b=Sa
Outputs: b, b= Z S.a.
Can measure S, by j
setting a, =0 for k # j

and measuring b,
ay —-
£ (x,v,2,1) = éE,U (x,y) P

E 377Q
¢ where 1, =

a; = : 2rres
! J2r}j{ ,

For _ﬂU‘: dxdy =1 we have a,a, = P]

b, --—

The net power flowing into the port 1s:

- -
Pj —a}.aj—bjbj

My

a b

Important case (2-port junction): "
If network 1s reciprocal. S. =S
|:bl:|:|:511 Sll:||:al:| P > Mt

b, S, S, || a, If network 1s lossless, S 1s unitary: S,S =1
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Definition of the Transmission Matrix

T allows you to cascade networks

‘:‘l l A 2 A I ."1 2 A ’l A !:
— — S > —
.T rr -Iv
S - = - -+
Bl B: BI B:_n B’l B!:
Left side: A =a, Bl - bl 4, _ Iy I, || 4, _ Iy I, T1.1 I, || 4
Right side: Az = bz-‘- Bz =4 B, I, I, || B, I, T, El I, || B,
" _ _
B T, T B, 1 5
O I e S A | e T, =— T,=——-2
o i S 51>
b _ S, S, a, T, = Su T. =— 51155 = 51,55,
= < Sq = Sﬁ
bz 1 L 521 522 i a, L - - i

If network 1s reciprocal. scattering matrix 1s symmetric anddetT =1

If network 1s lossless, S is unitary: S'S=1 44



Application to Gratings (Distributed Bragg Reflectors)

y
................ A
o ETEEESHESSEUUETH I
o 'y r L,
A e B |
Ry Y ' ________________
N (LTEERRRESSEUETH W2 I ) o5 —
nj_rrr‘_r i {fi"g I IR
- R
Fe : 1y
VCSEL In-plane
p

* At the Bragg frequency, the period of the grating is half of
the average optical wavelength in the medium.
* For each period, multiply 4 simple T-Matrices together
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Reading Assignments:

e Section 10.5 of Chuang’s book

* Sections 3.1-3.5 in Coldren, Corzine and Masanovic
 Section 8.2.5 in Coldren, Corzine and Masanovic



