ECE 536 - Integrated Optics and Optoelectronics Lecture 20 - March 31, 2022

Spring 2022
Tu-Th 11:00am-12:20pm
Prof. Umberto Ravaioli
ECE Department, University of Illinois

Lecture 20 Outline

- Integrated Optics Simulation Approaches
- Transmission Matrix Method

Most popular numerical simulation approaches

 for optical waveguide devices- Full solution of Maxwell's equations:

Finite-Differences Time-Domain (FDTD) Method

- Approximate EM solution techniques for light propagation in slowly varying waveguides

Beam Propagation Method

- Scattering formalism (Transmission Line)

Transmission Matrix Method

Maxwell's Equation

$$
\begin{gathered}
\nabla \times \mathbf{E}(\mathbf{r}, t)=-\partial_{t} \mathbf{B}(\mathbf{r}, t) \\
\nabla \times \mathbf{H}(\mathbf{r}, t)=\partial_{t} \mathbf{D}(\mathbf{r}, t)+\mathbf{J}(\mathbf{r}, t) \\
\nabla \cdot \mathbf{D}(\mathbf{r}, t)=\rho(\mathbf{r}, t), \\
\nabla \cdot \mathbf{B}(\mathbf{r}, t)=0
\end{gathered}
$$

Simple case of linear, isotropic, and non-dispersive medium

$$
\begin{aligned}
\mathbf{D}(\mathbf{r}, t) & =\varepsilon_{0} \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}, t), \\
\mathbf{B}(\mathbf{r}, t) & =\mu_{0} \mu(\mathbf{r}) \mathbf{H}(\mathbf{r}, t) .
\end{aligned}
$$

Finite Differences Time Dependent (FDTD)

The Yee grid in 3D - Uniform mesh $\quad(\delta x=\delta y=\delta z=h)$

Finite Differences Time Dependent (FDTD)

- Components of the electric fields are defined in the middle of the edges of the cube
- Components of the magnetic field are defined in the centers of the cube faces
- Time discretization: leapfrog scheme with time step $\delta \boldsymbol{\delta}$

Electric Field

$$
\begin{aligned}
& \frac{E_{i}^{n+1 / 2}-E_{i}^{n-1 / 2}}{\delta t}=-\frac{1}{\varepsilon_{0} \varepsilon_{i}} \frac{H_{i+1 / 2}^{n}-H_{i-1 / 2}^{n}}{h} \\
& E_{i}^{n+1 / 2}=E_{i}^{n-1 / 2}-\frac{\delta t}{h \varepsilon_{0} \varepsilon_{i}}\left(H_{i+1 / 2}^{n}-H_{i-1 / 2}^{n}\right)
\end{aligned}
$$

Finite Differences Time Dependent (FDTD)

Magnetic Field $\frac{H_{i+1 / 2}^{n+1}-H_{i+1 / 2}^{n}}{\delta t}=-\frac{1}{\mu_{0} \mu_{i+1 / 2}} \frac{E_{i+1}^{n+1 / 2}-E_{i}^{n+1 / 2}}{h}$,

$$
H_{i+1 / 2}^{n+1}=H_{i+1 / 2}^{n}-\frac{\delta t}{h \mu_{0} \mu_{i+1 / 2}}\left(E_{i+1}^{n+1 / 2}-E_{i}^{n+1 / 2}\right) .
$$

Finite Differences Time Dependent (FDTD)

$$
\begin{aligned}
\left.E_{x}\right|_{i+1 / 2, j, k} ^{n+1 / 2}= & \left.E_{x}\right|_{i+1 / 2, j, k} ^{n-1 / 2}+\frac{\delta t}{\varepsilon_{0} \varepsilon_{i+1 / 2, j, k}} \times\left(\frac{\left.H_{z}\right|_{i+1 / 2, j+1 / 2, k} ^{n}-\left.H_{z}\right|_{i+1 / 2, j-1 / 2, k} ^{n}}{\delta y}\right. \\
& \left.-\frac{\left.H_{y}\right|_{i+1 / 2, j, k+1 / 2} ^{n}-\left.H_{y}\right|_{i+1 / 2, j, k-1 / 2} ^{n}}{\delta z}\right),
\end{aligned}
$$

Similar discretization for y and z

$$
\begin{aligned}
\left.H_{x}\right|_{i, j+1 / 2, k+1 / 2} ^{n+1}= & \left.H_{x}\right|_{i, j+1 / 2, k+1 / 2} ^{n}+\frac{\delta t}{\mu_{0} \mu_{i, j+1 / 2, k+1 / 2}} \\
& \times\left(\frac{\left.E_{y}\right|_{i, j+1 / 2, k+1} ^{n+1 / 2}-\left.E_{y}\right|_{i, j+1 / 2, k} ^{n+1 / 2}}{\delta z}-\frac{\left.E_{z}\right|_{i, j+1, k+1 / 2} ^{n+1 / 2}-\left.E_{z}\right|_{i, j, k+1 / 2} ^{n+1 / 2}}{\delta y}\right),
\end{aligned}
$$

Similar discretization for y and z

Finite Differences Time Dependent (FDTD)

$$
\begin{aligned}
& E_{x ; i, j, k}^{n+1}=E_{x ; i, j, k}^{n}+\frac{Q}{\varepsilon_{i, j, k}}\left(H_{z ; i, j, k}^{n}-H_{z ; i, j-1, k}^{n}-H_{y ; i, j, k}^{n}+H_{y, i, i, k-1}^{n}\right), \\
& E_{y ; i, j, k}^{n+1}=E_{y ; i, j, k}^{n}+\frac{Q}{\varepsilon_{i, j, k}}\left(H_{x i, i, j, k}^{n}-H_{x ; i, j, k-1}^{n}-H_{z ; i, j, k}^{n}+H_{z ; i-1, j, k}^{n}\right), \\
& E_{z ; i, j, k}^{n+1}=E_{z ; i, j, k}^{n}+\frac{Q}{\varepsilon_{i, j, k}}\left(H_{y ; i, j, k}^{n}-H_{y ; i-1, j, k}^{n}-H_{x ; i, j, k}^{n}+H_{x ; i, j-1, k}^{n}\right), \\
& H_{x ; i, j, k}^{n+1}=H_{x ; i, j, k}^{n}+\frac{Q}{\mu_{i, j, k}}\left(E_{y ; i, j, k+1}^{n+1}-E_{y ; i, j, k}^{n+1}-E_{z ; i, j+1, k}^{n+1}+E_{z ; i, j, k}^{n+1}\right), \\
& H_{y ; i, j, k}^{n+1}=H_{y ; i, j, k}^{n}+\frac{Q}{\mu_{i, j, k}}\left(E_{z ; i+1, j, k}^{n+1}-E_{z ; i, j, k}^{n+1}-E_{x ; i, j, k+1}^{n+1}+E_{x ; i, j, k}^{n+1}\right), \\
& H_{z ; i, j, k}^{n+1}=H_{z ; i, j, k}^{n}+\frac{Q}{\mu_{i, j, k}}\left(E_{x ; i, j+1, k}^{n+1}-E_{x ; i, j, k}^{n+1}-E_{y ; i+1, j, k}^{n+1}+E_{y ; i, j, k}^{n+1}\right),
\end{aligned}
$$

Scaling $\quad \hat{E}=\frac{E}{\eta_{0}} \quad$ Uniform mesh $\quad(\delta x=\delta y=\delta z=h) \quad Q=\frac{c_{0} \delta t}{h}$

Beam Propagation Method (BPM)

Approximate simulation technique for light propagation in slowly varying optical waveguides

Helmholtz equation

$\frac{\partial^{2} E}{\partial x^{2}}+\frac{\partial^{2} E}{\partial y^{2}}+\frac{\partial^{2} E}{\partial z^{2}}+k^{2} n^{2}(x, y, z) E=0$.

$\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$

$$
\nabla^{2} \phi-j 2 k n_{0} \frac{\partial \phi}{\partial z}+k^{2}\left(n^{2}-n_{0}^{2}\right) \phi=0
$$

Beam Propagation Method (BPM)

Assuming weakly guiding condition

$$
\left(n^{2}-n_{0}^{2}\right) \cong 2 n_{0}\left(n-n_{0}\right)
$$

$$
\nabla^{2} \phi-j 2 k n_{0} \frac{\partial \phi}{\partial z}+k^{2}\left(n^{2}-n_{0}^{2}\right) \phi=0
$$

$$
\frac{\partial \phi}{\partial z}=-j \frac{1}{2 k n_{0}} \nabla^{2} \phi-j k\left(n-n_{0}\right) \phi
$$

Beam Propagation Method (BPM)

The two terms are applied separately

- The electric field $\varphi(x, z)$ is first propagated freely in index n_{0} over a distance $h / 2$.
- Phase retardation of the entire length h is taken into account at the center of the interval
- The resulting electric field is propagated again freely in index n_{0} for another distance $h / 2$ to obtain $\varphi(x, z+h)$

Beam Propagation Method (BPM)

An extensive theoretical reference for BPM is Chapter 7 of
K. Okamoto, "Fundamentals of Optical Waveguides" Elsevier (2006)
(Available for download from the digital library)

Some representative examples follow

Beam Propagation Method (BPM) - Examples

Beam Propagation Method (BPM) - Examples

Figure 7.12 BPM simulation of the light propagation in an S-bend waveguide consisting of a

Beam Propagation Method (BPM) - Examples

Figure 7.13 S-shaped bent waveguide with a waveguide offset.

Beam Propagation Method (BPM) - Examples

Figure 7.14 BPM simulation of the light propagation in an S-bend waveguide having an offset of $O_{f}=1.4 \mu \mathrm{~m}$.

Beam Propagation Method (BPM) - Examples

Figure 7.15 Schematic configuration of a Y-combiner consisting of single-mode waveguides.

Figure 7.16 BPM analysis of single-mode Y-combiner when when light is coupled into one of the two waveguides.

Beam Propagation Method (BPM) - Examples

Figure 2: Refractive index profile of a fiber coupler.
https://www.rp-photonics.com/passive_fiber_optics8.html

Beam Propagation Method (BPM) - Examples

Figure 3: Amplitude distribution in a fiber coupler, obtained with a numerical simulation of beam propagation, done with the software RP Fiber Power.
https://www.rp-photonics.com/passive_fiber_optics8.html

Transfer Matrix Method

Sections 3.1-3.5 in Coldren, Corzine and Mašanović

Definition of the Scattering Matrix

Linear Networks \quad S allows you to find outputs from inputs

Inputs: a_{n}
Outputs: b_{n} $\mathbf{b}=\mathbf{S a}$ $b_{i}=\sum_{j} S_{i j} a_{j}$
Can measure $\mathrm{S}_{i j}$ by setting $\mathrm{a}_{k}=0$ for $k \neq j$ and measuring b_{i}
$\mathcal{E}(x, y, z, t)=\hat{\boldsymbol{e}} E_{0} U(x, y) e^{j(\omega t-\bar{\beta} z)}$
$a_{j}=\frac{E_{0}}{\sqrt{2 \eta_{j}}} e^{-j \tilde{\beta} z}$ where $\eta_{j}=\frac{377 \Omega}{\tilde{n}_{j}}$
For $\int|U|^{2} d x d y=1$ we have $a_{j} a_{j}^{*}=P_{j}^{+}$
The net power flowing into the port is:
$P_{j}=a_{j} a_{j}^{*}-b_{j} b_{j}^{*}$
Important case (2-port junction):

$$
\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]
$$

If network is reciprocal, $\mathbf{S}_{t}=\mathbf{S}$
If network is lossless, \mathbf{S} is unitary: $\mathbf{S}_{t}^{*} \mathbf{S}=1$

Definition of the Transmission Matrix

T allows you to cascade networks

Left side: $A_{1}=a_{1}, B_{1}=b_{1}$
Right side: $A_{2}=b_{2}, B_{2}=a_{2}$

$$
\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right]=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]\left[\begin{array}{ll}
T_{11}^{\prime} & T_{12}^{\prime} \\
T_{21}^{\prime} & T_{22}^{\prime}
\end{array}\right]\left[\begin{array}{c}
A_{2}^{\prime} \\
B_{2}^{\prime}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
T_{11}=\frac{1}{S_{21}} & T_{12}=-\frac{S_{22}}{S_{12}} \\
T_{21}=\frac{S_{11}}{S_{21}} & T_{22}=-\frac{S_{11} S_{22}-S_{12} S_{21}}{S_{21}}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]}
\end{aligned}
$$

If network is reciprocal, scattering matrix is symmetric and $\operatorname{det} \mathbf{T}=1$
If network is lossless, \mathbf{S} is unitary: $\mathbf{S}_{t}^{*} \mathbf{S}=1$

Relation to r and t

$$
\begin{aligned}
r_{12} & =\left.\frac{b_{1}}{a_{1}}\right|_{a_{2}=0}=S_{11} \\
t_{12} & =\left.\frac{b_{2}}{a_{1}}\right|_{a_{2}=0}=S_{21} \\
r_{21} & =\left.\frac{b_{2}}{a_{2}}\right|_{a_{1}=0}=S_{22} \\
t_{21} & =\left.\frac{b_{1}}{a_{2}}\right|_{a_{1}=0}=S_{12} \\
\mathbf{S} & =\left[\begin{array}{ll}
r_{12} & t_{21} \\
t_{12} & r_{21}
\end{array}\right]
\end{aligned}
$$

$$
\operatorname{det} \mathbf{S}=S_{11} S_{22}-S_{12} S_{21}=r_{12} r_{21}-t_{12} t_{21}
$$

Relation to T-Matrix

$$
\mathbf{S}=\frac{1}{T_{11}}\left[\begin{array}{cc}
T_{21} & \operatorname{det} \mathbf{T} \\
1 & -T_{12}
\end{array}\right]
$$

Definition

$$
\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right]
$$

$$
A_{1}=T_{11} A_{2}+T_{12} B_{2}
$$

$$
B_{1}=T_{21} A_{2}+T_{22} B_{2}
$$

$$
\begin{gathered}
\text { Relation to } r \text { and } t \\
r_{12}=\left.\frac{B_{1}}{A_{1}}\right|_{B_{2}=0}=\frac{T_{21}}{T_{11}} \\
t_{12}=\left.\frac{A_{2}}{A_{1}}\right|_{B_{2}=0}=\frac{1}{T_{11}} \\
r_{21}=\left.\frac{A_{2}}{B_{2}}\right|_{A_{1}=0}=-\frac{T_{12}}{T_{11}} \\
t_{21}=\left.\frac{B_{1}}{B_{2}}\right|_{A_{1}=0}=\frac{\operatorname{det} \mathbf{T}}{T_{11}} \\
\mathbf{T}=\frac{1}{t_{12}}\left[\begin{array}{cc}
1 & -r_{21} \\
r_{12} \quad t_{12} t_{21}-r_{12} r_{21}
\end{array}\right] \\
\operatorname{det} \mathbf{T}=T_{11} T_{22}-T_{12} T_{21}=t_{21} / t_{12}
\end{gathered}
$$

Relation to S-Matrix

$$
\mathrm{T}=\frac{1}{S_{21}}\left[\begin{array}{cc}
1 & -S_{22} \\
S_{11} & -\operatorname{det} \mathrm{S}
\end{array}\right]
$$

Reciprocal Network (valid for normalized fields with and without loss)

$$
\begin{gathered}
\mathbf{S}_{t}=\mathbf{S} \rightarrow \begin{array}{c}
S_{12}=S_{21} \\
\operatorname{det} \mathbf{T}=1
\end{array} \\
\mathbf{S}=\left[\begin{array}{ll}
S_{11} & S_{21} \\
S_{21} & S_{22}
\end{array}\right]=\frac{1}{T_{11}}\left[\begin{array}{cc}
T_{21} & 1 \\
1 & -T_{12}
\end{array}\right] \\
\mathbf{T}=\left[\begin{array}{cc}
T_{11} & T_{12} \\
T_{21} & \left(T_{12} T_{21}+1\right) / T_{11}
\end{array}\right]=\frac{1}{S_{21}}\left[\begin{array}{cc}
1 & -S_{22} \\
S_{11} & S_{21}^{2}-S_{11} S_{22}
\end{array}\right]
\end{gathered}
$$

Lossless Reciprocal Network

$$
\begin{gathered}
\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}=1 \quad\left|T_{21}\right|^{2}+1=\left|T_{11}\right|^{2} \\
\mathbf{S}_{t}^{*} \mathbf{S}=1 \rightarrow\left|S_{12}\right|^{2}+\left|S_{22}\right|^{2}=1 \rightarrow 1+\left|T_{12}\right|^{2}=\left|T_{11}\right|^{2} \\
S_{11}^{*} S_{12}+S_{21}^{*} S_{22}=0 \\
T_{21}^{*}-T_{12}=0
\end{gathered} \quad \begin{array}{cc}
\mathbf{S}=\left[\begin{array}{cc}
S_{11} & S_{21} \\
S_{21} & -S_{11}^{*}\left(S_{21} / S_{21}^{*}\right)
\end{array}\right]=\frac{1}{T_{11}}\left[\begin{array}{cc}
T_{21} & 1 \\
1 & -T_{21}^{*}
\end{array}\right] \\
\mathbf{T}=\left[\begin{array}{ll}
T_{11} & T_{21}^{*} \\
T_{21} & T_{11}^{*}
\end{array}\right]=\left[\begin{array}{cc}
1 / S_{21} & S_{11}^{*} / S_{21}^{*} \\
S_{11} / S_{21} & 1 / S_{21}^{*}
\end{array}\right]
\end{array}
$$

Lossless Reciprocal Network with r and t Phase Shifts of 0 or π

$$
\begin{aligned}
& S_{22}=-S_{11} \\
& \begin{array}{l}
S_{11}=S_{11}^{*} \\
S_{21}=S_{21}^{*}
\end{array} \rightarrow \text { det } \mathbf{S}=-1 \\
& T_{22}=T_{11}, \quad T_{12}=T_{21} \\
& \mathbf{S}=\left[\begin{array}{cc}
S_{11} & S_{21} \\
S_{21} & -S_{11}
\end{array}\right]=\frac{1}{T_{11}}\left[\begin{array}{cc}
T_{21} & 1 \\
1 & -T_{21}
\end{array}\right] \\
& \mathbf{T}=\left[\begin{array}{ll}
T_{11} & T_{21} \\
T_{21} & T_{11}
\end{array}\right]=\frac{1}{S_{21}}\left[\begin{array}{cc}
1 & S_{11} \\
S_{11} & 1
\end{array}\right]
\end{aligned}
$$

Dielectric Interface

$$
S_{11}=\left.\frac{b_{1}}{a_{1}}\right|_{a_{2}=0}=-r_{1}=\frac{n_{1}-n_{2}}{n_{1}+n_{2}}
$$

Note r_{1} is a positive real number if $n_{2}>n_{1}$.
$S_{22}=\left.\frac{b_{2}}{a_{2}}\right|_{a_{1}=0}=r_{2}=-\left(-r_{1}\right)=r_{1}$
using EM wave impedances $\Rightarrow \frac{\eta_{L}-\eta_{0}}{\eta_{L}+\eta_{0}}=\frac{\sqrt{\frac{\mu_{0}}{\varepsilon_{2}}}-\sqrt{\frac{\mu_{0}}{\varepsilon_{1}}}}{\sqrt{\frac{\mu_{0}}{\varepsilon_{1}}}+\sqrt{\frac{\mu_{0}}{\varepsilon_{2}}}}=\frac{\frac{1}{\sqrt{\varepsilon_{2}}}-\frac{1}{\sqrt{\varepsilon_{1}}}}{\frac{1}{\sqrt{\varepsilon_{2}}}+\frac{1}{\sqrt{\varepsilon_{1}}}}$

$$
=\frac{\frac{1}{n_{2}}-\frac{1}{n_{1}}}{\frac{1}{n_{2}}+\frac{1}{n_{1}}}=\frac{\frac{n_{1}-n_{2}}{n_{1} n_{2}}}{\frac{n_{1}+n_{2}}{n_{1} n_{2}}}=\frac{n_{1}-n_{2}}{n_{1}+n_{2}}
$$

Dielectric Interface

$$
S_{11}=\left.\frac{b_{1}}{a_{1}}\right|_{a_{2}=0}=-r_{1}=\frac{n_{1}-n_{2}}{n_{1}+n_{2}}
$$

Note r_{1} is a positive real number if $n_{2}>n_{1}$.

$$
S_{22}=\left.\frac{b_{2}}{a_{2}}\right|_{a_{1}=0}=r_{2}=-\left(-r_{1}\right)=r_{1}
$$

Note r_{2} is a negative real number if $n_{2}>n_{1}(\pi$-phase shift).

$$
S_{12}=S_{21}=t=\sqrt{1-r_{1}^{2}}
$$

$$
\begin{aligned}
& \mathrm{T}=\left[\begin{array}{ll}
T_{11} & T_{21} \\
T_{21} & T_{11}
\end{array}\right]=\frac{1}{s_{12}}\left[\begin{array}{ll}
1 & s_{11} \\
s_{11} & 1
\end{array}\right] \\
& \mathbf{T}=\frac{1}{t}\left[\begin{array}{cc}
1 & -r_{1} \\
-r_{1} & 1
\end{array}\right]
\end{aligned}
$$

Transmission Line

$$
\mathbf{S}=\left[\begin{array}{cc}
0 & e^{-j \tilde{\beta} L} \\
e^{-j \tilde{\beta} L} & 0
\end{array}\right]
$$

$$
\mathbf{T}=\left[\begin{array}{cc}
e^{j \tilde{\beta} L} & 0 \\
0 & e^{-j \tilde{\beta} L}
\end{array}\right]
$$

Summary of Building Blocks for S and T

TABLE 3.3: Summary of S- and T-matrices for Simple "Building-Block" Components

Scattering Matrix	Structure	Transmission Matrix
$\left[\begin{array}{cc}r_{12} & t_{12} \\ t_{12} & -r_{12}\end{array}\right]$		$\frac{1}{t_{12}}\left[\begin{array}{cc}1 & r_{12} \\ r_{12} & 1\end{array}\right]$
	$r_{21}=-r_{12}$ and $t_{21}=t_{12}$	$r_{12}^{2}+t_{12}^{2}=1$
$\left[\begin{array}{cc}0 & e^{-j \phi} \\ e^{-j \phi} & 0\end{array}\right]$	\rightarrow	$\left[\begin{array}{cc}e^{j \phi} & 0 \\ 0 & e^{-j \phi}\end{array}\right]$
	$\phi=\tilde{\beta}_{2} L$	

$$
\left[\begin{array}{cc}
r_{12} & t_{12} e^{-j \phi} \\
t_{12} e^{-j \phi} & -r_{12} e^{-j 2 \phi}
\end{array}\right]
$$

$$
\frac{1}{t_{12}}\left[\begin{array}{cc}
e^{j \phi} & r_{12} e^{-j \phi} \\
r_{12} e^{j \phi} & e^{-j \phi}
\end{array}\right]
$$

$$
r_{12}^{2}+t_{12}^{2}=1
$$

Fabry-Perot Cavity

We can write these relations

$$
\begin{array}{ll}
b_{1}=-a_{1} r_{1}+a_{1}^{\prime} t_{1}, & a_{1}^{\prime}=b_{2}^{\prime} e^{-j \tilde{\beta} L} \\
b_{1}^{\prime}=a_{1} t_{1}+a_{1}^{\prime} r_{1}, & a_{2}^{\prime}=b_{1}^{\prime} e^{-j \tilde{\beta} L}
\end{array}
$$

$$
b_{2}=a_{2}^{\prime} t_{2}
$$

Solve for

$$
b_{2}^{\prime}=a_{2}^{\prime} r_{2}
$$

$$
S_{11}=b_{1} / a_{1} \quad S_{21}=b_{2} / a_{1}
$$

Fabry-Perot Cavity

$$
a_{2}=0
$$

$$
a_{1}=0
$$

$$
S_{11}=-r_{1}+\frac{t_{1}^{2} r_{2} e^{-2 j \bar{\beta} L}}{1-r_{1} r_{2} e^{-2 j \bar{\beta} L}},
$$

$$
S_{22}=-r_{2}+\frac{t_{2}^{2} r_{1} e^{-2 j \tilde{\beta} L}}{1-r_{1} r_{2} e^{-2 j \tilde{\beta} L}},
$$

$$
S_{21}=\frac{t_{1} t_{2} e^{-j \tilde{\beta} L}}{1-r_{1} r_{2} e^{-2 j \tilde{\beta} L}} .
$$

$$
S_{12}=S_{21} .
$$

Fabry-Perot Cavity

The Transmission Matrix for the cavity can be obtained from the Scattering Matrix or by multiplication of elementary Transmission Matrices for the interfaces and the transmission line

$$
a_{2}=0
$$

$$
T_{11}=\frac{1}{t_{1} t_{2}}\left[e^{j \tilde{\beta} L}-r_{1} r_{2} e^{-j \tilde{\beta} L}\right],
$$

$$
T_{21}=-\frac{1}{t_{1} t_{2}}\left[r_{1} e^{j \tilde{\beta} L}-r_{2} e^{-j \tilde{\beta} L}\right] .
$$

$$
\begin{gathered}
a_{1}=0 \\
T_{12}=-\frac{1}{t_{1} t_{2}}\left[r_{1} e^{-j \tilde{\beta} L}-r_{2} e^{j \tilde{\beta} L}\right] . \\
T_{22}=\frac{1}{t_{1} t_{2}}\left[e^{-j \tilde{\beta} L}-r_{1} r_{2} e^{j \tilde{\beta} L}\right],
\end{gathered}
$$

Lossless Fabry-Perot Cavity Spectra for S

Cleaved cavity $r=0.565$

Transmission Line - Interface - Transmission Line

(Example 3.1 in Coldren, Corzine and Mašanović)

$$
\begin{aligned}
\mathbf{T} & =\mathbf{T}_{\mathbf{1}} \cdot \mathbf{T}_{\mathbf{2}} \cdot \mathbf{T}_{\mathbf{3}}=\left[\begin{array}{cc}
e^{j \phi_{1}} & 0 \\
0 & e^{-j \phi_{1}}
\end{array}\right] \cdot \frac{1}{t_{12}}\left[\begin{array}{cc}
1 & -r_{12} \\
-r_{12} & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
e^{j \phi_{2}} & 0 \\
0 & e^{-j \phi_{2}}
\end{array}\right] \\
& =\frac{1}{t_{12}}\left[\begin{array}{cc}
e^{j\left(\phi_{1}+\phi_{2}\right)} & -r_{12} e^{j\left(\phi_{1}-\phi_{2}\right)} \\
-r_{12} e^{j\left(\phi_{2}-\phi_{1}\right)} & e^{-j\left(\phi_{1}+\phi_{2}\right)}
\end{array}\right] .
\end{aligned}
$$

Application to Gratings (Distributed Bragg Reflectors)

- At the Bragg frequency, the period of the grating is half of the average optical wavelength in the medium.
- For each period, multiply 4 simple T-Matrices together

Period of a uniform grating structure

Add one matrix to the previous case to account for the additional interface

T-matrix for the complete grating structure

$$
\mathrm{T}_{g}=\left[\mathrm{T}_{i}\right]^{m}=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]^{m}
$$

Application to Gratings (Distributed Bragg Reflectors)

Application to Gratings (Distributed Bragg Reflectors)

At the Bragg condition, elements for the T-matrix of one period are

$$
\begin{aligned}
T_{11} & =\frac{1}{t^{2}}\left[e^{j \phi+}-r^{2} e^{-j \phi-}\right] \rightarrow-\frac{1+r^{2}}{t^{2}} \\
T_{21} & =\frac{r}{t^{2}}\left[e^{j \phi+}-e^{-j \phi-}\right] \rightarrow-\frac{2 r}{t^{2}} \\
T_{12} & =\frac{r}{t^{2}}\left[e^{-j \phi+}-e^{j \phi-}\right] \rightarrow-\frac{2 r}{t^{2}} \\
T_{22} & =\frac{1}{t^{2}}\left[e^{-j \phi+}-r^{2} e^{j \phi-}\right] \rightarrow-\frac{1+r^{2}}{t^{2}}
\end{aligned}
$$

$\phi_{ \pm} \equiv \tilde{\beta}_{1} L_{1} \pm \tilde{\beta}_{2} L_{2}$ becomes either π or 0 at the Bragg condition.

Reflected Amplitude/Phase for Gratings

Example with $m=20$ and $r=0.1,0.025,0.01$

$\delta \equiv \beta-\beta_{0} \quad=$ detuning parameter
β is the average propagation constant of the grating L_{g} is the grating length

$$
\beta=\frac{\beta_{1} / n_{1}+\beta_{2} / n_{2}}{1 / n_{1}+1 / n_{2}}
$$

the phase delay of each layer is $\beta_{1} L_{1}=\beta_{2} L_{2}=\pi / 2$.

Reflected Amplitude for Gratings

Reflected Phase for Gratings

Reading Assignments:

- Section 10.5 of Chuang's book
- Sections 3.1-3.5 in Coldren, Corzine and Mašanović
- Section 8.2.5 in Coldren, Corzine and Mašanović

Next time: Gratings Structure with Coupled Modes Theory

(a)

A grating structure can be considered as a perturbation on a uniform slab waveguide:
$\varepsilon(x, z)=\varepsilon^{(0)}(x)+\Delta \varepsilon(x, z)$
(b)

ε_{1}		
ε_{2}	$\stackrel{b(z)}{\Leftarrow}$	$\stackrel{a(z)}{\Rightarrow}$

For the unperturbed slab waveguide TE_{0} mode
Forward: $A_{0} e^{i \beta_{0} z}$ Backward: $B_{0} e^{-i \beta_{0} z}$
(c)
$\varepsilon(x, z)$ is periodic in z
Fourier transform:

$$
\Delta \varepsilon(x, z)=\varepsilon_{0} \sum_{p=-\infty}^{\infty} \Delta \varepsilon_{p}(x) e^{i p \frac{2 \pi}{\Lambda} z}
$$

$\Delta \varepsilon=0$

For a lossless structure:

$$
\Delta \varepsilon_{p}^{*}(x)=\Delta \varepsilon_{-p}(x)
$$

