Radiation Pressure

Consider \(N \) free charge carriers per unit volume inside the mirror. The force per unit volume on the mirror due to Lorentz force is

\[
NF = Nqv \times B_t = J_t \times B_t
\]

The integral over \(z \) is the total force per unit area of the mirror

\[
P_{rad} = \int_0^\infty J_t \times B_t \, dz
\]

The magnitude of this quantity is defined as the radiation pressure of the reflecting wave. It is in time-dependent form, so let’s take the time-average
Radiation Pressure

Time-average of the radiation pressure

\[\langle P_{rad} \rangle = \int_0^\infty \frac{1}{2} \text{Re}\{\tilde{J} \times \tilde{B}^*\} \, dz \]

\[= \hat{\gamma} \int_0^\infty \frac{1}{2} \text{Re}\{(\sigma_2 \tau E_0) (\frac{\mu_2 \tau E_0}{\eta_2})\} e^{-2\alpha_2 z} \, dz \]

\[= \hat{\gamma} \frac{|E_0|^2}{2} \text{Re}\{\left(\frac{2\gamma_2}{\eta_o}\right) \left(\frac{\mu_2}{\eta_2} \frac{2\eta_2}{\eta_o}\right)\} \frac{1}{2\alpha_2} = \hat{\gamma} 2 \frac{|E_0|^2}{2\eta_o} \frac{\text{Re}\{\gamma_2\} \mu_2}{\alpha_2 \eta_o} \]

\[= \hat{\gamma} 2 \frac{|E_0|^2 \mu_o}{2\eta_o \eta_o} = 2 \hat{\gamma} \frac{|E_0|^2}{2\eta_o} \sqrt{\frac{\mu_o \epsilon_o}{c}} = 2 \langle S_i \rangle / c \]

This factor accounts for wave recoil off the mirror

incident time-average Poynting vector \[\frac{1}{c} \]
Radiation Pressure

The effect of radiation pressure is normally too weak for humans to feel it. For instance, the solar radiation power measured on Earth can be about 1.4 kW/m². The time average radiation pressure is

\[
\langle P_{\text{rad}} \rangle = \frac{1.4 \times 10^3}{3 \times 10^8} = 4.7 \times 10^{-6} \text{ N/m}^2
\]

We have assumed that the body absorbs the radiation and that reflection is negligible (no factor of 2). A person sunbathing on the beach with total cross-sectional area of 0.6 m² will feel a force of

\[
F = 4.7 \times 10^{-6} \times 0.6 = 2.82 \times 10^{-6} \text{ N}
\]

If the same person weighs 70 kg, the gravitational force would be approximately 686 newtons.
Radiation Pressure

However, radiation pressure could have practical applications in space. A thin polymer film coated with aluminum could be deployed to realize a “space sailboat”. Because it is very reflective, the factor of 2 can be included in the calculation.

For a sailboat with mass $m_1 = 10^3$ kg at a distance r from the Sun (with mass $m_2 = 1.99 \times 10^{30}$ kg) the gravitational force is

$$F_g = 6.67 \times 10^{-11} \left(\frac{m_1 m_2}{r^2} \right)$$

Estimate of solar radiation power density from previous example

$$\langle S_i \rangle = 1.4 \times 10^3 \frac{r_e^2}{r^2} \quad r_e = 1.5 \times 10^{11} \text{m}$$

Sun-Earth average distance

Radiation force on sail

$$F_r = 2 \times 1.4 \times 10^3 \left(\frac{\text{Area}}{c} \right) \left(\frac{r_e^2}{r^2} \right)$$

Gravitational pull is balanced by radiation pressure on the sail when

$$\text{Area} \approx 0.63 \times 10^6 \text{m}^2$$
A 200 MHz, left-hand circularly polarized plane wave with an electric field modulus of 5 V/m is normally incident in air on a dielectric medium with $\varepsilon_r = 4$ in the region $z \geq 0$. (electric field is maximum at $z = 0$ and $t = 0$)

Calculate the reflection and transmission coefficients.

Determine the percentages of the incident average power reflected by the boundary and transmitted into the second medium.
ECE 329 – Fall 2021

Prof. Ravaioli – Office: 2062 ECEB

Lecture 27
Lecture 27 – Outline

• Guiding of EM waves
• Transmission lines as guides of TEM waves
• Parallel Plate structure
• Examples of transmission lines
• Fundamental equations
• Characteristic impedance

Reading assignment
Prof. Kudeki’s ECE 329 Lecture Notes on Fields and Waves:
27) Guided TEM waves on TL systems
Guiding EM waves for a purpose

We have learned so far that electromagnetic waves carry energy. They can also carry information if we encode it in the wave amplitude, frequency or phase.

On a large scale, EM waves carry signals between a transmitting antenna and one or many receiving antennas (e.g., radio and TV broadcasting, cellular telephones, communication satellites).

In many situations, however, we need to carry information using EM waves from a “generator” to one or many receiving “loads” through electrical cables, optical fibers, circuit boards.

Whenever a “signal” is sent electrically or optically we are using EM waves (even when we think that voltages and currents are doing the job).
Transmission Lines

Transmission lines are the circuit components which support propagation of a signal from a generator to a load. At sufficiently high frequencies, when the wavelength is comparable to the length of the conductors forming the transmission line, propagation of the signal must be treated with wave theory.

Examples:

- Two-wire line
- Microstrip
- Coaxial cable
It all depends on the frequency

At low frequency the line elements may be approximated as equipotential conductors. This is reasonable as long as the length of the wires is much smaller than the wavelength of the signal.

\[V_L = V_g \frac{Z_L}{Z_g + Z_L} \]
At higher frequencies the wavelength is comparable with the transmission line length. The signal cannot change instantaneously at all locations and it propagates as a wave of voltage and current.

\[V(z) = V^+ e^{-j \beta z} + V^- e^{j \beta z} \]
Fundamental assumption of transmission line theory –
The electromagnetic field vectors always lie on the cross-section normal to the direction of propagation. This is the Transverse Electro-Magnetic (TEM) configuration which exists at any frequency.

Example: Coaxial Line

At sufficiently high frequency the TEM assumption is no longer valid because other field configurations (modes) appear and waveguide theory should be used.
The parallel plate transmission line (wave guide)

Assume uniform waves along the y-direction $\Rightarrow \frac{\partial}{\partial y}(\cdot) = 0$

Assume no fringing effects $\Rightarrow w \gg d$

Propagation along the z-direction

In these condition we can assume TEM wave fields
TEM propagation

Faraday’s Law

\[\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} \quad \Rightarrow \quad \frac{\partial E_x}{\partial z} = -\mu \frac{\partial H_y}{\partial t} \]

Ampere’s Law

\[\nabla \times \mathbf{H} = \sigma \mathbf{E} + \varepsilon \frac{\partial \mathbf{E}}{\partial t} \quad \Rightarrow \quad -\frac{\partial H_y}{\partial z} = \sigma E_x + \varepsilon \frac{\partial E_x}{\partial t} \]

Obtain scalar forms (1D model)

conductivity of dielectric between plates
Transform directly into circuit equations

- Multiply by d and w both equations
- Define the voltage from plate 2 to 1
 \[V = E_x d \]
- Define the current on plate 2
 \[I = J_{sz} W = H_y W \]
- Obtain
 \[W \frac{\partial V}{\partial z} = - \mu d \frac{\partial I}{\partial t} \]
 \[- d \frac{\partial I}{\partial z} = \epsilon W \frac{\partial V}{\partial t} + \sigma W W V \]
\[W \frac{\partial V}{\partial z} = -\mu d \frac{\partial I}{\partial t} \]

\[\frac{\partial V}{\partial z} = L \frac{\partial I}{\partial t} \]

\[-d \frac{\partial I}{\partial z} = \epsilon W \frac{\partial V}{\partial t} + \sigma W V \]

\[-\frac{\partial I}{\partial z} = C \frac{\partial V}{\partial t} + G V \]

Circuit parameters for the parallel plate structure

\[L = \mu \frac{d}{W} \]

\[C = \epsilon \frac{W}{d} \]

\[G = \sigma \frac{W}{d} \]

inductance per unit length

capacitance per unit length

conductance per unit length
Telegrapher’s equations

\[
- \frac{\partial V}{\partial z} = L \frac{\partial I}{\partial t}
\]

\[
- \frac{\partial I}{\partial z} = C \frac{\partial V}{\partial t} + G V
\]

For good conductor plates with resistivity \(\rho \) there would be additional loss term in the first equation

\[
RI
\]

where \(R \) = resistance per unit length

In the ideal case of perfect dielectric and perfect conductor we can neglect \(R \) and \(G \)

Telegrapher’s equations for the lossless transmission line
Geometrical factor GF

For the parallel plates line we have a geometrical factor

$$GF = \frac{W}{d}$$

so that

$$L = \mu \frac{d}{W} = \frac{\mu}{GF} \quad C = \varepsilon \frac{W}{d} = \varepsilon GF$$

These are general expressions. Different structures will have a different geometric factor:

- Coaxial cable
 $$GF = \frac{2\pi}{\ln \frac{b}{a}}$$

- Two-wire (twin-lead) line
 $$GF = \frac{\pi}{\cosh^{-1} \frac{D}{2a}}$$
Telephonist’s wave equations

Wave equations for voltage and current can be obtained in complete analogy to electric and magnetic field

\[
\frac{\partial^2 V}{\partial z^2} = LC \frac{\partial^2 V}{\partial t^2}
\]

\[
\frac{\partial^2 I}{\partial z^2} = LC \frac{\partial^2 I}{\partial t^2}
\]

These are now equivalent decoupled equations. We only need one of the two to solve a problem.
d’Alembert wave solutions

\[
\frac{\partial^2 V}{\partial z^2} = \mathcal{L}C \frac{\partial^2 V}{\partial t^2}
\]

This equation has solutions of the form

\[
V(z, t) = f(t \pm \frac{z}{v})
\]

with

\[
\mathcal{L} C = \frac{\mu}{\epsilon GF} \epsilon GF = \mu \epsilon
\]

and

\[
v \equiv \frac{1}{\sqrt{\mathcal{L}C}} = \frac{1}{\sqrt{\mu \epsilon}}.
\]
d’Alembert wave solutions

From the second telegrapher’s equation

\[- \frac{\partial I}{\partial z} = C \frac{\partial V}{\partial t} = C \frac{\partial}{\partial t} f \left(t \mp \frac{z}{v} \right)\]

\[\frac{\partial I}{\partial t} = -C \frac{\partial z}{\partial t} \frac{\partial f}{\partial \left(t \mp \frac{z}{v} \right)}\]

\[I(z, t) = \pm Cv f \left(t \mp \frac{z}{v} \right)\]

\[Cv = \frac{C}{\sqrt{LC}} = \sqrt{\frac{C}{L}} = GF \sqrt{\frac{\varepsilon}{\mu}} = \frac{1}{Z_o}\]

characteristic impedance

\[Z_o \equiv \sqrt{\frac{L}{C}}\]
In a circuit we have boundary conditions

(Generator → Forward wave) (Load → Reflected wave)

\[V(z,t) = f(t - \frac{z}{v}) + g(t + \frac{z}{v}) \]

\[I(z,t) = \frac{f(t - \frac{z}{v})}{Z_0} - \frac{g(t + \frac{z}{v})}{Z_0} \]

\[v = \frac{1}{\sqrt{LC}} \]

\[Z_0 = \sqrt{\frac{L}{C}} \]
A uniform transmission line behaves as a “distributed circuit” described by a cascade of identical cells with infinitesimal length.

$L = \text{series inductance per unit length}$

$R = \text{series resistance per unit length}$

$C = \text{shunt capacitance per unit length}$

$G = \text{shunt conductance per unit length}$

To lighten up the notation, we will drop the wavy hat on top of the phasor variables. When voltage and current are notated only as function of space, they are phasors.
For ideal conductors and perfectly insulating medium it is possible to neglect resistive effects. In this approximation we have the *loss-less transmission line* characterized only by reactive circuit parameters.
\[(V + dV) - V = -j \omega L \, dz \, I \]

\[\frac{dV}{dz} = -j \omega L \, I \]

The **series inductance** determines the variation of the **voltage** from input to output of the cell.
\[dI = -j \omega CV \, dz - j \omega C \frac{dV}{dz} \]

\[\frac{dI}{dz} = -j \omega CV \]

The current flowing through the shunt capacitance determines the variation of the current from input to output of the cell.
The elementary cell circuit is described by two coupled first order differential equations, which can be transformed into independent wave equations for voltage and current.

Phasor Telegrapher’s equations

\[
\begin{align*}
\frac{dV}{dz} &= -j\omega LI \\
\frac{dI}{dz} &= -j\omega CV
\end{align*}
\]

Phasor Telephonist’s equations

\[
\begin{align*}
\frac{d^2V}{dz^2} &= -\omega^2 LC V \\
\frac{d^2I}{dz^2} &= -\omega^2 LC I
\end{align*}
\]
The general solution of the wave equation has two terms corresponding to forward and backward travelling waves. The solution for the voltage has the form

\[V(z) = V^+ e^{-j\beta z} + V^- e^{j\beta z} \]

\[\beta = \omega \sqrt{\frac{L}{C}} \]

propagation constant
The current distribution on the transmission line can be readily obtained by differentiation of the result for the voltage

\[
\frac{dV}{dz} = -j\beta V^+ e^{-j\beta z} + j\beta V^- e^{j\beta z} = -j\omega L I
\]

which gives, using \(\beta = \omega \sqrt{LC} \)

\[
I(z) = \sqrt{\frac{C}{L}} \left(V^+ e^{-j\beta z} - V^- e^{j\beta z} \right)
\]

\[
= \frac{1}{Z_0} \left(V^+ e^{-j\beta z} - V^- e^{j\beta z} \right)
\]

Note sign
The real quantity

\[Z_0 = \sqrt{\frac{L}{C}} \]

is the “characteristic impedance” of the loss-less transmission line.
Never interpret the characteristic impedance as a lumped impedance that can replace the transmission line in an equivalent circuit. This is a very common mistake!

The line is rather a “two-port” network with input impedance which depends on its length, besides the load and Z_0.

$I_1 \rightarrow V_1 Z_0 \rightarrow I_2$

$I_1 \leftarrow V_2 \leftarrow I_2$

$I_1 \rightarrow I_2$

$I_1 \leftarrow I_2$
A 200 MHz, left-hand circularly polarized plane wave with an electric field modulus of 5 V/m is normally incident in air on a dielectric medium with $\varepsilon_r = 4$ in the region $z \geq 0$. (electric field is maximum at $z = 0$ and $t = 0$)

Calculate the reflection and transmission coefficients.

Determine the percentages of the incident average power reflected by the boundary and transmitted into the second medium.
Left-handed circular polarization

We can write the phasor of the electric field as

\[\vec{E}^i = a_0 (\hat{x} + \hat{y} e^{j \pi/2}) e^{-j \beta z} = a_0 (\hat{x} + j \hat{y}) e^{-j \beta z} \]

In the time domain

\[E^i(z, t) = \hat{x} \, a_0 \cos(\omega t - \beta z) - \hat{y} a_0 \sin(\omega t - \beta z), \]

\[|E^i| = [a_0^2 \cos^2(\omega t - \beta z) + a_0^2 \sin^2(\omega t - \beta z)]^{1/2} \]

\[\rightarrow \quad a_0 = 5 \text{ (V/m)} \]

This is the radius of the circle described by the electric field.
Now get the wavenumbers

\[\beta_1 = \frac{\omega}{c} = \frac{2\pi \times 2 \times 10^8}{3 \times 10^8} = \frac{4\pi}{3} \text{ rad/m,} \]

\[\beta_2 = \frac{\omega}{u_{p_2}} = \frac{\omega}{c} \sqrt{\varepsilon_{r_2}} = \frac{4\pi}{3} \sqrt{4} = \frac{8\pi}{3} \text{ rad/m} \]

We can write the incident field as

\[\vec{E}^i = 5(\hat{x} + j\hat{y}) e^{-j4\pi z/3} \quad \text{ (V/m)} \]
Intrinsic impedances

\[\eta_1 = \eta_0 = 120\pi \quad (\Omega) \]

\[\eta_2 = \frac{\eta_0}{\sqrt{\varepsilon_r}} = \frac{\eta_0}{2} = 60\pi \quad (\Omega) \]

Reflection and Transmission coefficients

\[\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = \frac{60\pi - 120\pi}{60\pi + 120\pi} = -\frac{60}{180} = -\frac{1}{3} \]

\[\tau = 1 + \Gamma = \frac{2}{3} \]

Also:

\[\tau = \frac{2\eta_2}{\eta_1 + \eta_2} = \frac{2 \times 60\pi}{180\pi} = \frac{2}{3} \]
Electric Fields

\[\mathbf{\tilde{E}}^i = 5(\hat{x} + j\hat{y}) e^{-j\frac{4\pi z}{3}} \quad (\text{V/m}) \]

\[\mathbf{\tilde{E}}^r = 5\Gamma(\hat{x} + j\hat{y}) e^{j\frac{4\pi z}{3}} = -\frac{5}{3}(\hat{x} + j\hat{y}) e^{j\frac{4\pi z}{3}} \quad (\text{V/m}) \]

\[\mathbf{\tilde{E}}^t = 5\tau(\hat{x} + j\hat{y}) e^{-j\frac{8\pi z}{3}} = \frac{10}{3}(\hat{x} + j\hat{y}) e^{-j\frac{8\pi z}{3}} \quad (\text{V/m}) \]

Total Field in medium 1

\[\mathbf{\tilde{E}}_1 = \mathbf{\tilde{E}}^i + \mathbf{\tilde{E}}^r = 5(\hat{x} + j\hat{y}) \left[e^{-j\frac{4\pi z}{3}} - \frac{1}{3} e^{j\frac{4\pi z}{3}} \right] \quad (\text{V/m}) \]
Power

\[<S^i> = \frac{|E_0^i|^2}{2\eta_1} \]

incident

\[<S^r> = \frac{|E_0^r|^2}{2\eta_1} \]

reflected

\[<S^t> = \frac{|E_0^t|^2}{2\eta_2} \]

transmitted

For practice, calculate the time-average power densities above an verify that total power is conserved.

\[\text{Reflectivity} = \frac{<S^r>}{<S^i>} = \frac{|E_0^r|^2}{2\eta_1} \frac{2\eta_1}{|E_0^i|^2} = |\Gamma|^2 \]

\[\text{Transmissivity} = \frac{<S^t>}{<S^i>} = \frac{|E_0^t|^2}{2\eta_2} \frac{2\eta_1}{|E_0^i|^2} = |\tau|^2 \frac{\eta_1}{\eta_2} \]
% of reflected power = $100 \times |\Gamma|^2 = \frac{100}{9} = 11.11\%$

% of transmitted power =

$$= 100 \times |\tau|^2 \frac{\eta_1}{\eta_2} = 100 \times \left(\frac{2}{3}\right)^2 \times \frac{120\pi}{60\pi} = 88.89\%$$