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Lecture 31 – Outline 

• Monochromatic (single frequency) excitation of transmission lines 
• Phasor solution (steady-state regime) 
• Periodicity in transmission lines 
• Resonances 
• Standing waves and periodic oscillations 
• Realization of reactance (inductance or capacitance) with short-circuited or with 

open-circuited transmission lines  
 

 
 
 
 
 
 
Reading assignment  
Prof. Kudeki’s ECE 329 Lecture Notes on Fields and Waves: 

31) Periodic oscillations in lossless Transmission Line circuits 
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Consider now the same circuit we saw last lecture, with input  

𝑅𝑔 = 2𝑍1 

𝑍1 𝑍2 = 2𝑍1 
𝑅𝐿 = 𝑍2 

v1 v2 = 2v1 

l/2 

matched load 

+ 
f (t) 

l 



4 

Impulse response from the bounce diagram (voltage) 
Reflected by interface Reflected by generator 

Injected at interface 

𝝉𝟏𝟐 

12  
Γ𝑔Γ12

𝑛
 

Γ𝑔Γ12
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𝝉𝒈 

𝝉𝒈 
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Impulse response from the bounce diagram (current) 
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Solution Example 
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A “shunt” resistance 𝑹 is placed at the junction. Determine 
reflection and transmission coefficient there.   

𝑅𝑔 = 2𝑍1 

𝑍1 𝑍2 = 2𝑍1 
𝑅𝐿 = 𝑍2 

v1 v2 = 2v1 

l/2 

matched load 

+ 
f (t) 

l 

𝑅 
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The wavefront reaching the junction is going to see two 
impedances in parallel, 𝑹 and 𝒁𝟐 , which correspond to an 
equivalent impedance   

For a wave coming from the right 
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The phasor steady-state solution for single frequency generator 
source can be obtained by applying phasor transformation 

Phasor wave solution in a uniform transmission line 

Mathematically these are the same as EM plane wave solutions 

𝑉0
−  and 𝑉0

+ are in general complex and are determined from 
the boundary conditions imposed by the load and the generator. 



10 

We mentioned last time that load location is the best space 
reference for steady-state analysis.  We will explain why through 
examples. 

Phasor wave solution Coordinate transformation 
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Significance of line impedance 

Every line location is characterized by a line impedance 𝒁 𝒅  
and a reflection coefficient  𝒅  

Imagine to cut the line at location d.  The input impedance of the portion of line 
terminated by the load is the same as the line impedance at that location 
“before the cut”. The behavior of the line on the left of location d is the same if 
an equivalent impedance with value Z(d) replaces the cut out portion. 
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Periodicity of transmission lines  

Consider monochromatic excitation of a transmission line at a 
specific frequency.   
 

Let’s assume that we can change the length of the line, keeping 
the generator and the load unchanged. 
 

We will exclude the case of a load matched to the line’s 
characteristic impedance, since there are no reflections and the 
length does not affect the patterns of voltage and current.  
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Behavior of matched line (𝒁𝑳 = 𝒁_𝟎) 

time-dependent signal 

constant phasor magnitude 

The current has a similar pattern along the line. 
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Line with arbitrary load    𝒁𝟎 = 𝟓𝟎  and 𝒁𝑳 = 𝟏𝟓𝟎        𝒍 = 𝟏. 𝟎  
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Line with arbitrary load    𝒁𝟎 = 𝟓𝟎  and 𝒁𝑳 = 𝟏𝟓𝟎       𝒍 = 𝟐. 𝟑𝟖  

same behavior at load 
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Line with arbitrary load    𝒁𝟎 = 𝟓𝟎  and 𝒁𝑳 = 𝟏𝟓𝟎       𝒍 = 𝟐. 𝟑𝟖  

Standing wave patterns 

𝒅 = 𝟏. 𝟎  

(Space-dependent magnitudes of the phasors for voltage and current)  
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Line with arbitrary load    𝒁𝟎 = 𝟓𝟎  and 𝒁𝑳 = 𝟏𝟓𝟎       𝒍 = 𝟐. 𝟑𝟖  

Line impedance 

𝒅 = 𝟏. 𝟎  
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Line with arbitrary load    𝒁𝟎 = 𝟓𝟎  and 𝒁𝑳 = 𝟏𝟓𝟎       𝒍 = 𝟐. 𝟑𝟖  

Reflection coefficient 

𝒅 = 𝟏. 𝟎  
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Line with open circuit load    𝒁𝟎 = 𝟓𝟎        𝒍 = 𝟎. 𝟓  
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Line with open circuit load    𝒁𝟎 = 𝟓𝟎        𝒍 = 𝟏. 𝟎  
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Line with open circuit load    𝒁𝟎 = 𝟓𝟎        𝒍 = 𝟑. 𝟎  
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Line with short circuit load    𝒁𝟎 = 𝟓𝟎        𝒍 = 𝟑. 𝟎  
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short circuit load, open circuit input    𝒁𝟎 = 𝟓𝟎        𝒍 = 𝟏. 𝟐𝟓  
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These explorations show that periodicity of line properties are 
established by the reflection coefficient which repeats every /𝟐. 
 
For a given length of line we can identify resonant modes 
(complete standing waves) for frequencies which correspond to 
multiples of /𝟐, when the ends of the line are both open circuits 
or short circuits. 

resonant frequency 

resonant wavelength 

implying that resonances occur at frequencies for which the 
physical length corresponds to an integer number of /𝟐. 
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Consider a line section open circuited at both ends. The current is 
expressed by forward and reflected waves as 

with zero boundary conditions at the ends 

periodicity 

waveforms are the same 

period 

fundamental  
frequency 
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From Fourier analysis 

with zero boundary conditions at the ends 

fundamental  
wavenumber 
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In phasor form 

Back to the time domain 

2 sin 𝐴 sin 𝐵 = cos 𝐴 − 𝐵 − cos (𝐴 + 𝐵) compare with original form 
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Similarly for the voltage 

from the phasor form 
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If the transmission line is terminated by a short circuit and has an 
open circuit on the other end then resonant frequencies are 
obtained when the length  corresponds to an odd multiple of /4 

resonant frequency 

resonant condition 
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Example 

short 
circuit 

open 
circuit 
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Realize any imaginary impedance with a short-circuited line 
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short-circuited line 

line impedance 

line current 

line voltage 



34 

Realize any imaginary impedance with an open-circuited line 
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open-circuited line 

line impedance 

line current 

line voltage 
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40 L = Line length 
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44 L = Line length 
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You can also use  

Short circuited line 

Input Impedance 

Input Admittance 
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Resonant circuits 

short circuit at resonance parallel circuit at resonance 
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Resonant circuits 

A short line stub is equivalent to an open circuit when the length is 
an odd multiple of /4 with resonant frequencies 

A short line stub is equivalent to a short circuit when the length is 
an even multiple of /4 (integer number of /2) with resonant 
frequencies 
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You can build circuits with short TL stubs as reactive elements 
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