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Lecture 31 — Qutline

 Monochromatic (single frequency) excitation of transmission lines
* Phasor solution (steady-state regime)

* Periodicity in transmission lines

* Resonances

« Standing waves and periodic oscillations

* Realization of reactance (inductance or capacitance) with short-circuited or with
open-circuited transmission lines

Reading assighment
Prof. Kudeki’s ECE 329 Lecture Notes on Fields and Waves:
31) Periodic oscillations in lossless Transmission Line circuits



Consider now the same circuit we saw last lecture, with input

fi(t) = sin(wt)u(t)

Rg — 2Z1
O matched load
+ Zy Ly = 24,
f(t R, =7,
{ —"
0 1/2 |
[ = 2400 m
/1 =250

vy = 150m/ us



Impulse response from the bounce diagram (voltage)

Reflected by generator Reflected by interface
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Impulse response from the bounce diagram (current)
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Solution Example
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A “shunt” resistance R is placed at the junction. Determine
reflection and transmission coefficient there.

Rg —_ 2Z1

O matched load

f(t)+ R § RL — ZZ

O—1-0
~
N



The wavefront reaching the junction is going to see two
impedances in parallel, R and Z,, which correspond to an
equivalent impedance

N
— RZQ 2 Zeq + Zl
eq — 7
R + 2 o QZ€Q
. Zeq + Zl
For a wave coming from the right
Log — L
A Rz, [y = — =
6q_R+Zl Zeq+ZQ
22
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The phasor steady-state solution for single frequency generator
source can be obtained by applying phasor transformation

Phasor wave solution in a uniform transmission line

L™

Vi(z) = V0+f€_j’83 + Vo_f?‘jﬂz

- v: . VAul
[(z) = 2 /P D ,IF:
£ 2

Mathematically these are the same as EM plane wave solutions

V5 and Vy are in general complex and are determined from
the boundary conditions imposed by the load and the generator.
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We mentioned last time that load location is the best space
reference for steady-state analysis. We will explain why through

examples. -
7 _'..F Transmission line
+

Ve % A n |z
— _O_—

Generatorn l.oad

| -z
z=-1 z=0
d <—} :

d=1 d=10

Phasor wave solution

d = —7

Coordinate transformation

gt

V( )_ V+ —JBz + V_ Bz

~ V : V..
[(z) = L e—iBz _ 0 ,ibz

Zo Zo

o

V( } — V—F{;jﬁd + V— —JjBd

_I_ —
fiey = Y0 isa _ Yo

Zo Zo

E—;,Bd
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Line with a generic load impedance

Since the reflection coefficient is VO_

L VO+

we can derive

v (d)=Vy e (14T, e )=V e (1+T(d))

V+ JBd V+€Jﬂd

d)==7 (1-T,e*)= 7 (1-r'(d))
r (d) — FL- e—ljﬁd generalized reflection coefficient
Z(d)z V(d) =Z ]+r(d) line impedance

I(d) "1-T(d)




Significance of line impedance

Every line location is characterized by a line impedance Z(d)
and a reflection coefficient I'(d)

A

Imagine to cut the line at location d. The input impedance of the portion of line
terminated by the load is the same as the line impedance at that location
“before the cut”. The behavior of the line on the left of location d is the same if

an equivalent impedance with value Z(d) replaces the cut out portion.
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Periodicity of transmission lines

Consider monochromatic excitation of a transmission line at a
specific frequency.

Let’s assume that we can change the length of the line, keeping
the generator and the load unchanged.

We will exclude the case of a load matched to the line’s
characteristic impedance, since there are no reflections and the
length does not affect the patterns of voltage and current.

ta

v

S—+0
~S—4-0
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Behavior of matched line (Z; = Z_0)

+
1.0 2Vl

constant phasor magnitude

v(d, t) ¢
[V]
H time-dependent signal

0.0

-1.0

The current has a similar pattern along the line.
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Line with arbitraryload Z;=50QandZ; =150Q [=1.0A

-
1.0 _ 2Vl

v(d t)

[Vl

0.0

i 0

"
200 _ 2V Zy

i(d,t)

[mA]

0.0

-20.0
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Line with arbitraryload Zy,=50QandZ; =150Q [ =2.38A

10 _ 21Vl
v(d t)
[V]
0.0
1.0 -
[ 0
same behavior at load
200 _ 2 vz, )
i(d t)
[mA]
0.0
-20.0




Line with arbitraryload Zy,=50QandZ; =150Q [ =2.38A

a0 @ |V(d)=750.0 [mV] d =00% =00m g|v:|
|
|
|
1V(d)| !
[V] :
|
|
|
|
|
0.0 : |
l ! 0
I
200 _ © [I(d)=50[mA] : 2[V7| 1Zy
|
|
o |
[I(d)] :
[mA] :
|
|
0.0

Standing wave patterns

(Space-dependent magnitudes of the phasors for voltage and current)



Line with arbitraryload Zy,=50QandZ; =150Q [ =2.38A

1500 _ © Re{Z}=150.0 [Q] d =00% =00m

Re{Z(d)}

[Q]

0.0

66.546 © Im{Z}=00 [Q]

o /\ R R
1
[Q] |

AN N NE NN

Line impedance

18



Line with arbitraryload Zy =50Qand Z; = 150 Q

[l=2.38A

o © Re{l}=0.5 d =002 =00m
T |
1
|
Re{T g} /\
|
|
|
|
|
|
|
|
-1.0 I
! 0
1
o ® Im{T}=0.0 |
|
|
Im{T" j} !
|
1
)
|
\/: \_/
|
-1.0

d=1.0A

Reflection coefficient
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Line with open circuit load

1.0 _

v(d, t)

[Vl

0.0

200 _

i(dt)

[mA]

0.0

-20.0

@ Vmax =1.0 [ V]

Z():SOQ

d =004 =00m

[=0.5A

.
2|vy|

@ Imax =0.0 [A]

d =004 =00m

2Vl Z,
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Line with open circuitload Z;=50Q [=1.0A

10 @ Vmax =1.0 [ V] d =004 =00m 2[vY|

v(d, t)

[Vl

0.0

-1.0

I 0

@ Imax =00 [A] d =00%L =00m 2|V:;VZO

i(d,t)

[mA]

0.0
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Line with open circuitload Z;=50Q [ =3.0A

10 @ Vmax =1.0 [V] d =004 =0.0m 2|V

v(d t)

[Vl

0.0

! 0

@ = = = +
20.0 Imax =00 [A] d =004 =00m Z\Volfzo_

i(dt)

[mA]

0.0

-20.0




Line with short circuit load

1.0

v(d,t)

[Vl

0.0

20.0

i(dt)

[mA]

0.0

-20.0

@ Vmax =0.0 [V]

ZOZSOQ

d =004 =0.0m

[=3.0A

.
2Vl

@ Tmax =20.0 [mA]

d =004 =0.0m

2 VI Z,

0
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short circuit load, open circuitinput Z,=50Q [ =1.25A

10 ® Vmax =0.0 [ V] d =00% =00m 23|

v(d,t)

[Vl

0.0

-1.0

) 0

@ = = = +
T Imax =20.0 [mA] d =00i =00m Z\Volf’ZO_

i(dt)

[mA]

0.0

-20.0




These explorations show that periodicity of line properties are
established by the reflection coefficient which repeats every A /2.

For a given length of line we can identify resonant modes
(complete standing waves) for frequencies which correspond to

multiples of A/2, when the ends of the line are both open circuits
or short circuits.

T o
resonant frequency W = —"n f — N HZ

( 20

resonant wavelength )\ —_ — = —

implying that resonances occur at frequencies for which the g
physical length corresponds to an integer number of A /2.

|
S

o>~
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Consider a line section open circuited at both ends. The current is
expressed by forward and reflected waves as

fit—==) g(t+=)
I[(z,1) = 7 ' 2?-'

with zero boundary conditions at the ends

waveforms are the same
| fi)  glt) .
1(0. 1) = — - =0 t)= 1(t
0.1) === —>  g(t)=f(?)
(t =1L t+4 . , . ,
(i t):f(Z ) —Q(Z )y —> flt—4) = ft+7)
' ‘ f(t) = ft+7)
seriod T _ 2{—{ periodicity
fundamental , . f__f”T . ﬂ
frequency “’u(f) o T T ( 26



From Fourier analysis
o'
f(t)=F,+ Z F, cos(nw,t + 0,
n=1

with zero boundary conditions at the ends

fit—=2) = flt+37)

2
— F,
- Z 7{( ()%(n»dot + 6, — ’/802:) o (‘:os(nwat + 0+ n/gozﬂ
n=1 "—°
wavenumber |00 = Wo/U =T/ .



In phasor form

f ( Z) — Z % 63] On {fj_} nfoz €} nG, :;}
. O

—Z il e/ (—27) sin(nfB,z)

Back to the time domain

= 2F,
[(z,t) = - sin(nw,t + 6,,) sin(nf3,2)
n—1 o

2 sin(A) sin(B) = cos(A — B) —cos(A+ B) | compare with original form
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Similarly for the voltage

Viz,t) = Z 2F, cos(nw,t + 6,) cos(nf,z)

n=1
from the phasor form

B

V( Z) _ Zn Fn. e 76, { e Infoz 1 e gnf3 ::}
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If the transmission line is terminated by a short circuit and has an
open circuit on the other end then resonant frequencies are
obtained when the length £ corresponds to an odd multiple of A/4

)\:27T/5: T

4 4 203

A
resonant condition g — Z (2” —I— 1), 1 Z O

resonant frequency f()l" T > O

=573 .




Example

i 6><i=12><i

< >|< >
10 @ Vmax =0.0 [ V] d =00% =00m 2.|V2:| )
v(d,t)
[V]
0.0
-1.0
) 0
short
gperf circuit
circuit
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Realize any imaginary impedance with a short-circuited line

Zg ZL=0

V(d=0)=V; e [1+T " |=V;[1+T,]=0

= I, =-1
Vo - +
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short-circuited line
line voltage

V(d) V+ Jﬁd_l_V— —jpd _ V+ Jjpd V+ —-Jjpd
:V(;[efﬁd—e”ﬁd]:2ﬂ/o+ sm(,()’d)

line current

](d) Zlo |:V+ jpd V— —Jﬂd}_ZLO[V:; Jﬂd_l_V+ Jﬂd:|
_ ’;_o;[ew e 22 cos(Bd)

DUV ) 2gvesin(Bd)
2(d)= 1(d) 2V, cos(pd)/Z, = JZ,tan(/ d)33




Realize any imaginary impedance with an open-circuited line

1(d=0)=V—0efﬂ0[1—rLef2ﬁ0]=V—°[1—FL]
ZO ZO
= 1, =1
I A
=" = V, =V




open-circuited line
line voltage

V(d) — %+efﬁd + %—e—jﬁd — I/E;_ejﬁd + VI;_e_jﬁd

=V [ejﬁd _|_e—jﬁd:| =y cos(,[)’d)

line current

](d)zzi[ 0+ejﬁd_ 0—e—jﬂdi|:ZL[Vyejﬂd_Vye—jﬁd]
0 0
= %[efﬁd —e M| = 22 IO/O sin(fd )
line impedance
V(d) 2y cos(pd) . Z,

2(d)= 1(d) ) 2jVy sin(pd)/Z, Y tan( Ad) ;




Reactive impedances can be realized with transmission lines
terminated by a short or by an open circuit. The input impedance of
a loss-less transmission line of length L terminated by a short
circuit is purely imaginary

Z;, = jZytan(BL) = j Z, tan(z?zTL): JjZy tan 2R—fL

Vp

For a specified frequency f, any reactance value (positive or
negative!) can be obtained by changing the length of the line from (0

to /2. An inductance is realized for L < A/4 (positive tangent)
while a capacitance is realized for A/4 < L < )\/2 (hegative tangent).

When L = 0 and L = A/2 the tangent is zero, and the input

impedance corresponds to a short circuit. However, when L = /4
the tangent is infinite and the input impedance corresponds to an
open circuit.
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Since the tangent function is periodic, the same impedance
behavior of the impedance will repeat identically for each additional

line increment of length A/2. A similar periodic behavior is also

obtained when the length of the line is fixed and the frequency of
operation is changed.

At zero frequency (infinite wavelength), the short circuited line
behaves as a short circuit for any line length. When the frequency
Is increased, the wavelength shortens and one obtains an

inductance for L < A/4 and a capacitance for A/4 < L < A/2, with
an open circuit at L = A/4 and a short circuit again at L = A./2.

Note that the frequency behavior of lumped elements is very

different. Consider an ideal inductor with inductance L assumed to
be constant with frequency, for simplicity. At zero frequency the
inductor also behaves as a short circuit, but the reactance varies
monotonically and linearly with frequency as

X = ol (always aninductance)
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Short circuited transmission line — Fixed frequency

L L=20 Li, =0 short circuit
0<Lc< % Im{Z;,} >0 inductance
A I

L = 1 Ly —> © open circuit

%{ L < % Im{Z;,} <0 capacitance
A .

L = 5 Zi, =0 short circuit
%{. L < % Im{Z;,} >0 inductance
= % L, —> © open circuit

34
e <L<A Im{Z;,} <0 capacitance
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Normalized Input Impedance Z(L)/Zo=jtan(? L)

Impedance of a short circuited transmission line

(fixed frequency, variable length)

B inductive mdu) inductive

_ capacitive cap.

B | | | | | | | | | | |

0 100 200 300 400 500 @ [deg]
n/(2B)= /4 /P =A/2 3n/(2P)=31/4 2n/P=A Sn/(2PB)=51/4 L

Line Length L
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Impedance of a short circuited transmission line

~ (fixed length, variable frequency)

= 40

: —

= N

TR

\ B

= 20 — !

= N

N 10 ~ inductive inductive inductive

o F J

Q B

& 0

'G I

@ -

o 10 - r‘» F’

E ) - capacitive cap.

R

s

T B

N30 -

E - ‘

E 40 L L I L I |

§ 0 100 200 300 400 500 @ [deg]
Vp;‘ (4L) Vp [ (2L) 3Vp [ (4L) Vp /L 5vp [ (4L) f

L = Line length

Frequency of operation
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For a transmission line of length L terminated by an open circuit,
the input impedance is again purely imaginary

. 2 . Z . Z
Zi :_Jtan({[;L):_J 2075 -/ ’
tan(L) tan 2’RfL
A v

We can also use the open circuited line to realize any reactance, but
starting from a capacitive value when the line length is very short.

Note once again that the frequency behavior of a corresponding
lumped element is different. Consider an ideal capacitor with

capacitance C assumed to be constant with frequency. At zero

frequency the capacitor behaves as an open circuit, but the
reactance varies monotonically and linearly with frequency as

1
X = —( (always a capacitance)
®
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Open circuit transmission line — Fixed frequency

L

L=20

)
A
H

A A
wn S N PN o B SN IR
A

S .
N

A
| > |

W
Nk

w
N

A

- +
A
N

Im{Zr'n} <0

Z;, =0

in
Im{Z;,}>0

e

m_>°o

Im{Z;,} <0

Z; =0

mn

Im{Z;,} >0

open circuit

capacitance

short circuit

inductance

open circuit

capacitance

short circuit

inductance

\

J
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Normalized Input Impedance 2Z(L)/ Zo =-jcotan(p L)

Impedance of an open circuited transmission line
(fixed frequency, variable length)

Line Length L

B |
| inductive inductive inductive
capacitive capacitive capacitive
B | | | | | | | | | |
100 200 300 400 500 O [deg]
n/(2B) =A/4 /B =A2 3n/(2B)=3A1/4 2n/p =2A Sm/(2B) = SA/4 L
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— Normalized In

put Impedance Z(L)/ Zo =-jcotan(p L)

Impedance of an open circuited transmission line

(fixed length, variable frequency)

inductive

inductive

inductive

capacitive

g;

capacitive

0 100

200

300

0 vy (4L)

vpf{ZL)

3vpf{4L)

\

P

/L

5vp, / (4L)

= Line length

Frequency of operation

500 g [deg]
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You can also use

Y, = — Characteristic admittance

Zo
Short circuited line

Input Impedance

Z(l) = 32, tan(Bl)

Input Admittance
S 1 |
V() = —— = - — —jY, cot(Sl
V=20 = 7Z,anip) ~ oot
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Resonant circuits 1

W = = W,
VvV LC

Series Parallel

— C

T | T 1
ZS — ](WL WO) }/}7 o ](WO CLJL)

short circuit at resonance parallel circuit at resonance  “°




Resonant circuits

A short line stub is equivalent to an open circuit when the length is
an odd multiple of A/4 with resonant frequencies

1
f== (2

n) tor n=0.1.2.3,---
20 n) ) Ly 49

A short line stub is equivalent to a short circuit when the length is
an even multiple of A/4 (integer number of A/2) with resonant
frequencies

.

f=—ntforn=1223---
2€ 47



You can build circuits with short TL stubs as reactive elements
Series network:

short

Parallel network:

short
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It is possible to realize resonant circuits by using transmission
lines as reactive elements. For instance, consider the circuit below
realized with lines having the same characteristic impedance:

short
circuit

Zr‘nl

anz

Zi = jZ tan(BLy )

short
circuit

Ziny = jZytan(BL, )
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The circuit is resonant if L; and L, are chosen such that an
iInductance and a capacitance are realized.

A resonance condition is established when the total input
Impedance of the parallel circuit is infinite or, equivalently, when
the input admittance of the parallel circuit is zero

. . + - . =(
jZytan(B,Ly) jZytan(B,L;)
or
tan &Ll = —tan &Lz with Brzz_n:%
v]) vp A‘f‘ vp

Since the tangent is a periodic function, there is a multiplicity of

possible resonant angular frequencies o, that satisfy the condition
above. The values can be found by using a numerical procedure to

solve the trascendental equation above. -



