ECE 329 - Fall 2022

Prof. Ravaioli - Office: 2062 ECEB

Lecture 39

Lecture 39 – Outline

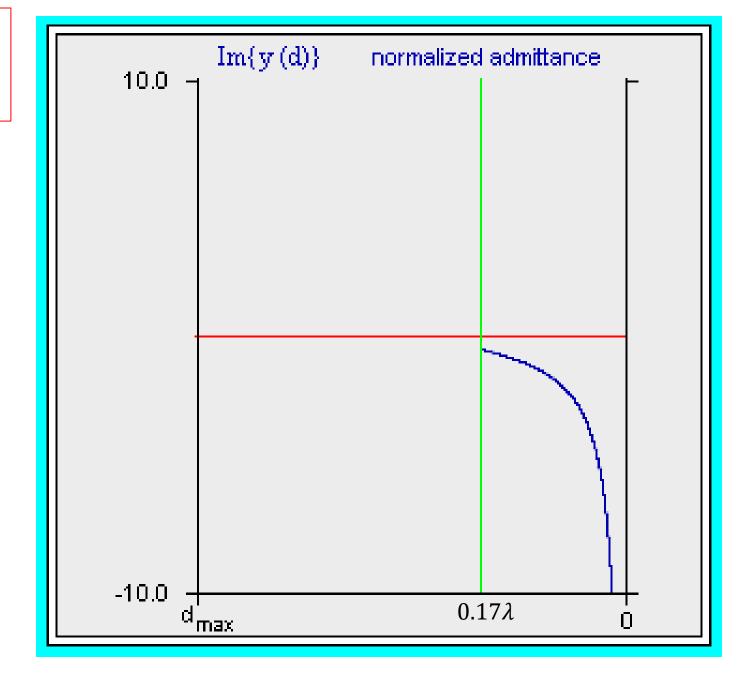
- Lossy Transmission Lines (material not included in final exam)
- Class wrap-up

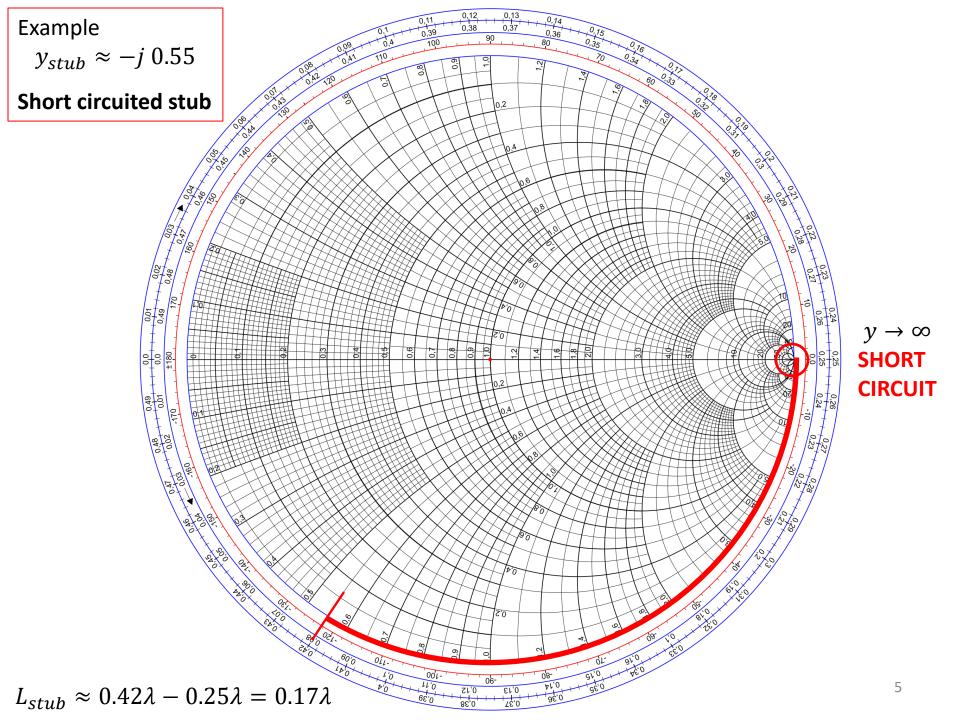
Reading assignment
Prof. Kudeki's ECE 329 Lecture Notes on Fields and Waves:
39) Lossy Lines

Exercise:

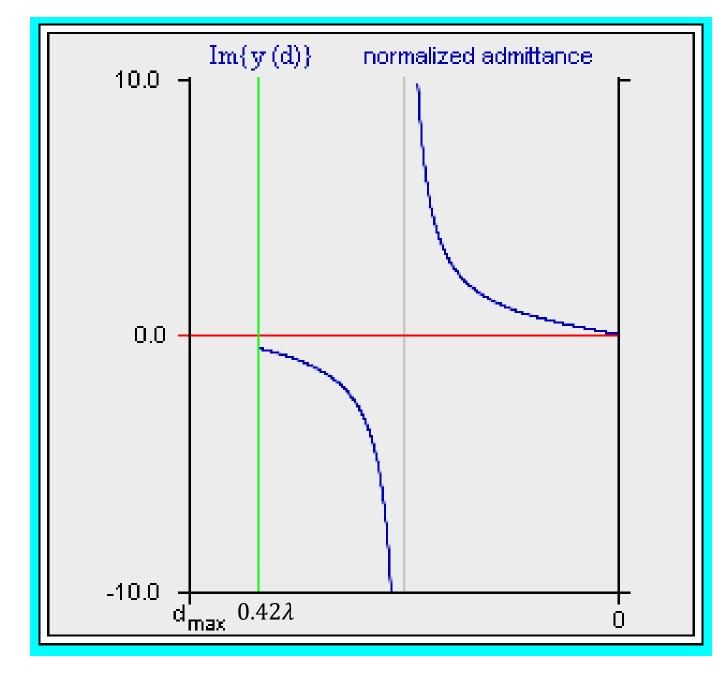
Design a stub line with a given normalized input admittance using the Smith Chart

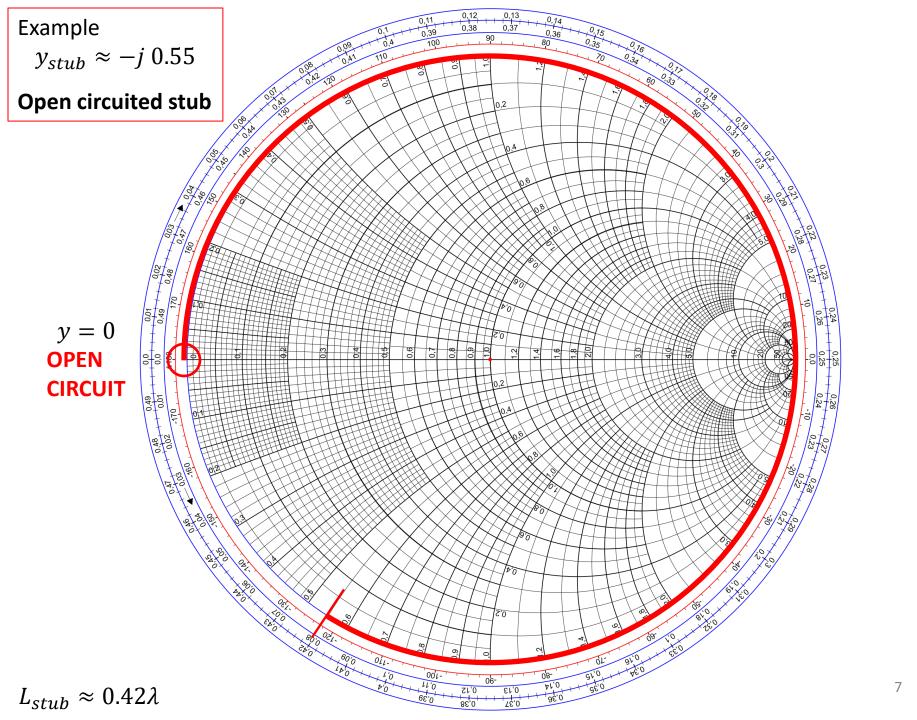
Example $y_{stub} \approx -j \ 0.55$ Short circuited stub



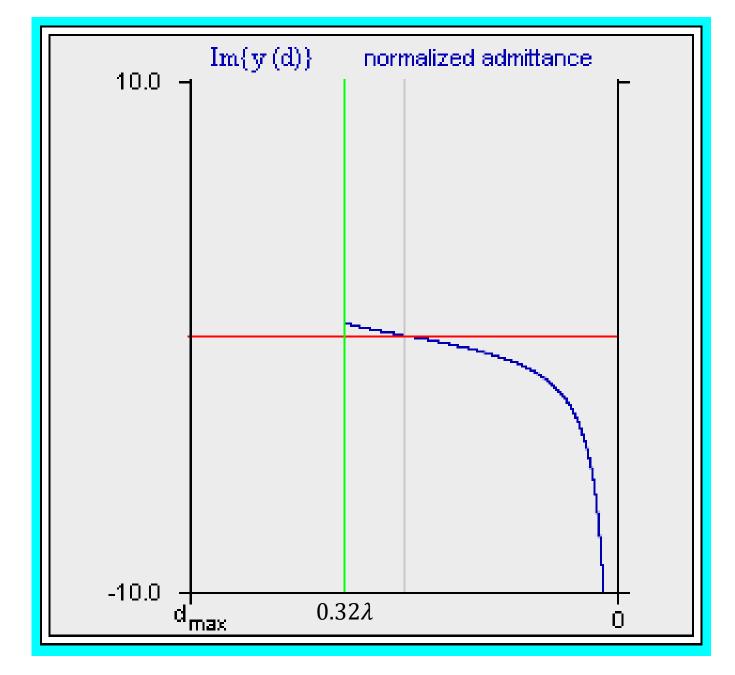


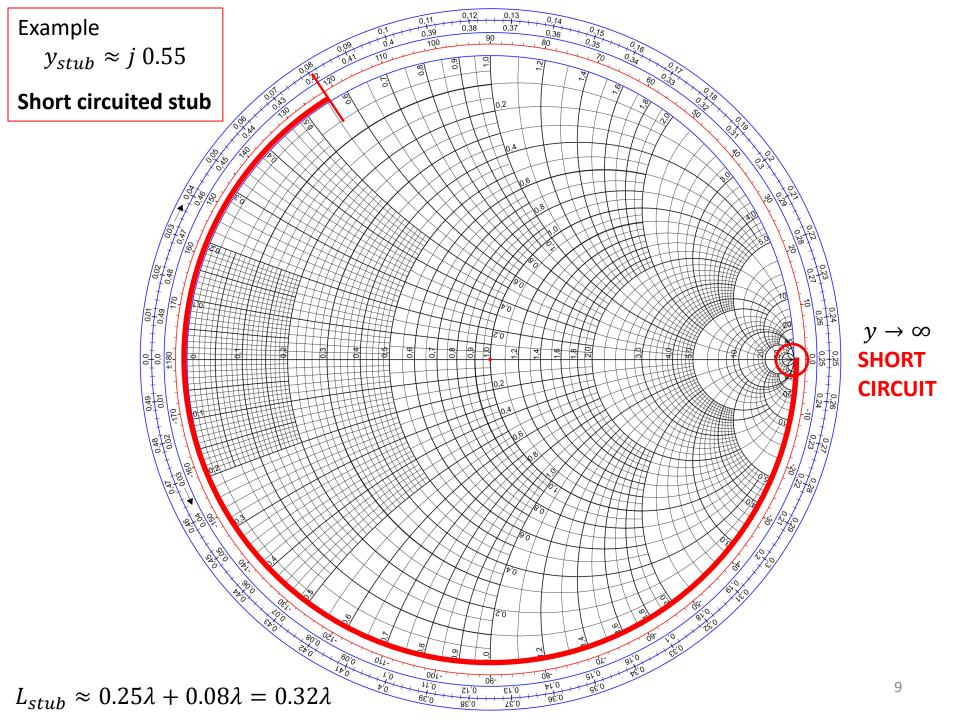
Example $y_{stub} \approx -j \ 0.55$ Open circuited stub



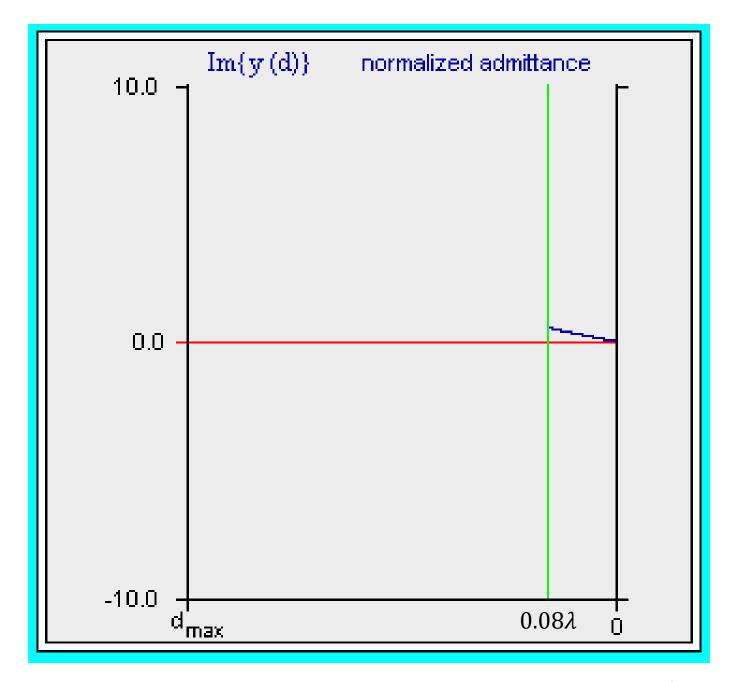


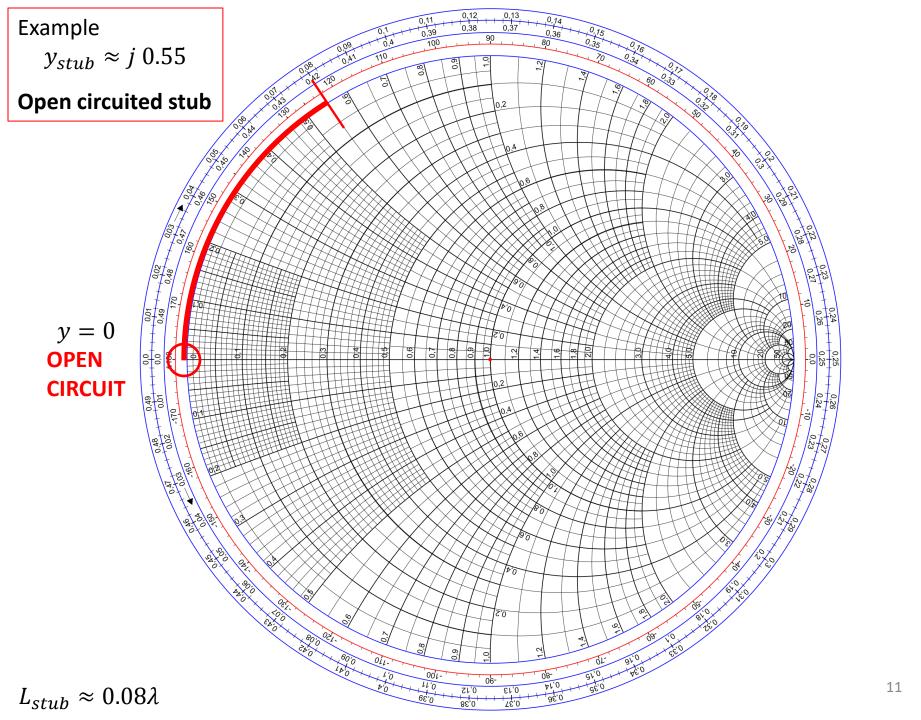
Example $y_{stub} \approx j \ 0.55$ Short circuited stub





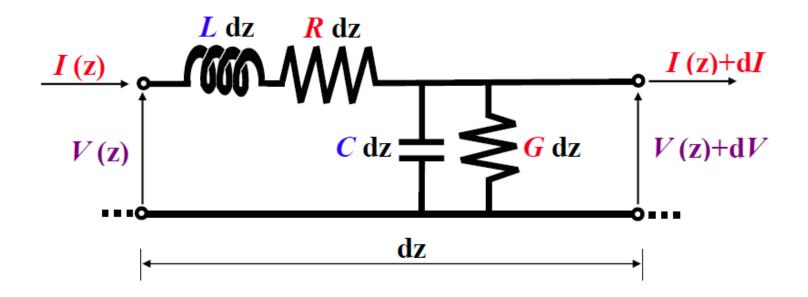
Example $y_{stub} \approx j \ 0.55$ Open circuited stub





Lossy Lines (not on final exam)

Lossy Transmission Lines – Distributed impedance model



The impedance parameters L, R, C, and G represent:

L = series inductance per unit length

R = series resistance per unit length

C = shunt capacitance per unit length

G = shunt conductance per unit length.

Lossy Transmission Lines – Equation

$$\begin{cases} \frac{\mathrm{d}V}{\mathrm{d}z} = -(j\omega L + R)I \\ \frac{\mathrm{d}I}{\mathrm{d}z} = -(j\omega C + G)V \end{cases}$$

Telephonists' equations

$$\begin{cases} \frac{d^2V}{dz^2} = (j\omega L + R)(j\omega C + G)V \\ \frac{d^2I}{dz^2} = (j\omega C + G)(j\omega L + R)I \end{cases}$$

$$\gamma = \sqrt{(j\omega L + R)(j\omega C + G)} = \alpha + j\beta$$

$$\gamma = \sqrt{(j\omega L + R)(j\omega C + G)} = \alpha + j\beta$$

$$V(\mathbf{z}) = V^{+} e^{-\gamma \mathbf{z}} + V^{-} e^{\gamma \mathbf{z}}$$

$$I(z) = \sqrt{\frac{(j\omega C + G)}{(j\omega L + R)}} (V^{+}e^{-\gamma z} - V^{-}e^{\gamma z})$$
$$= \frac{1}{Z_{0}} (V^{+}e^{-\gamma z} - V^{-}e^{\gamma z})$$

$$Z_0 = \sqrt{\frac{(j\omega L + R)}{(j\omega C + G)}}$$

$$\gamma = \sqrt{(j\omega L + R)(j\omega C + G)} = \alpha + j\beta$$

$$V(\mathbf{z}) = V^{+} e^{-\gamma \mathbf{z}} + V^{-} e^{\gamma \mathbf{z}}$$

$$I(z) = \sqrt{\frac{(j\omega C + G)}{(j\omega L + R)}} (V^{+}e^{-\gamma z} - V^{-}e^{\gamma z})$$
$$= \frac{1}{Z_{0}} (V^{+}e^{-\gamma z} - V^{-}e^{\gamma z})$$

$$Z_0 = \sqrt{\frac{(j\omega L + R)}{(j\omega C + G)}}$$



$$V(d) = V^{+}e^{\gamma d} + V^{-}e^{-\gamma d}$$

$$I(d) = \frac{1}{Z_0} \left(V^+ e^{\gamma d} - V^- e^{-\gamma d} \right)$$

$$V(d) = V^{+} e^{\gamma d} \left(1 + \Gamma_R e^{-2\gamma d} \right)$$

$$I(d) = \frac{V^+ e^{\gamma d}}{Z_0} \left(1 - \Gamma_R e^{-2\gamma d} \right)$$

$$\Gamma(d) = \Gamma_R e^{-2\gamma d}$$

$$V(d) = V^{+}e^{\gamma d} \left(1 + \Gamma(d)\right)$$
$$I(d) = \frac{V^{+}e^{\gamma d}}{Z_{0}} \left(1 - \Gamma(d)\right)$$

For the general lossy line

$$Y_{0} = \frac{1}{Z_{0}} = \frac{Z_{0}^{*}}{Z_{0} Z_{0}^{*}} = \frac{R_{0} - jX_{0}}{|Z_{0}|^{2}} = \frac{R_{0} - jX_{0}}{R_{0}^{2} + X_{0}^{2}} = G_{0} + jB_{0}$$

$$G_{0} = \frac{R_{0}}{R_{0}^{2} + X_{0}^{2}}$$

$$B_{0} = \frac{-X_{0}}{R_{0}^{2} + X_{0}^{2}}$$

$$B_{0} = \frac{-X_{0}}{R_{0}^{2} + X_{0}^{2}}$$
18

Let's review the impedance-admittance terminology:

Impedance = Resistance +
$$j$$
 Reactance $Z = R + jX$

Admittance = Conductance +
$$j$$
 Susceptance $Y = G + jB$

An important practical case is the low-loss transmission line, where the reactive elements still dominate but R and G cannot be neglected as in a loss-less line. We have the following conditions:

$$\omega L \gg R$$
 $\omega C \gg G$

so that

$$\gamma = \sqrt{(j\omega L + R)(j\omega C + G)}$$

$$= \sqrt{j\omega L j\omega C \left(1 + \frac{R}{j\omega L}\right) \left(1 + \frac{G}{j\omega C}\right)}$$

$$\approx j\omega \sqrt{LC} \sqrt{1 + \frac{R}{j\omega L} + \frac{G}{j\omega C} - \frac{RG}{\omega^2 LC}}$$

The last term under the square root can be neglected, because it is the product of two very small quantities.

The low-loss line is analogous to EM wave propagation in imperfect dielectric. The standard Smith chart can still be used without modifications in this case.

What remains of the square root can be expanded into a truncated Taylor series

$$\gamma \approx j\omega\sqrt{LC}\left[1 + \frac{1}{2}\left(\frac{R}{j\omega L} + \frac{G}{j\omega C}\right)\right]$$
$$= \frac{1}{2}\left(R\sqrt{\frac{C}{L}} + G\sqrt{\frac{L}{C}}\right) + j\omega\sqrt{LC}$$

so that

$$\alpha = \frac{1}{2} \left(R \sqrt{\frac{C}{L}} + G \sqrt{\frac{L}{C}} \right) \qquad \beta = \omega \sqrt{LC}$$

The characteristic impedance of the low-loss line is a real quantity for all practical purposes and it is approximately the same as in a corresponding loss-less line

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \approx \sqrt{\frac{L}{C}}$$

and the phase velocity associated to the wave propagation is

$$v_p = \frac{\omega}{\beta} \approx \frac{1}{\sqrt{LC}}$$

BUT NOTE:

In the case of the low-loss line, the equations for voltage and current retain the same form obtained for general lossy lines.

The characteristic impedance of the loss-less line is real and we can express the power flow, anywhere on the line, as

$$\langle P(\mathbf{d}, t) \rangle = \frac{1}{2} \operatorname{Re} \{ V(\mathbf{d}) I^*(\mathbf{d}) \}$$

$$= \frac{1}{2} \operatorname{Re} \left\{ V^+ e^{j\beta \mathbf{d}} \left(1 + \Gamma_R e^{-j2\beta \mathbf{d}} \right) \right.$$

$$= \frac{1}{Z_0} (V^+)^* e^{-j\beta \mathbf{d}} \left(1 - \Gamma_R e^{-j2\beta \mathbf{d}} \right)^* \right\}$$

$$= \frac{1}{2Z_0} |V^+|^2 - \frac{1}{2Z_0} |V^+|^2 |\Gamma_R|^2$$
Incident wave

This result is valid for any location, including the input and the load, since the transmission line does not absorb any power.

In the case of low-loss lines, the characteristic impedance is again real, but the time-average power flow is position dependent because the line absorbs power.

$$\langle P(\mathbf{d},t) \rangle = \frac{1}{2} \operatorname{Re} \left\{ V(\mathbf{d}) I^*(\mathbf{d}) \right\}$$

$$= \frac{1}{2} \operatorname{Re} \left\{ V^+ e^{\alpha \mathbf{d}} e^{j\beta \mathbf{d}} \left(1 + \Gamma_R e^{-2\gamma \mathbf{d}} \right) \right\}$$

$$= \frac{1}{Z_0} (V^+)^* e^{\alpha \mathbf{d}} e^{-j\beta \mathbf{d}} \left(1 - \Gamma_R e^{-2\gamma \mathbf{d}} \right)^* \right\}$$

$$= \frac{1}{2Z_0} |V^+|^2 e^{2\alpha \mathbf{d}} - \frac{1}{2Z_0} |V^+|^2 e^{-2\alpha \mathbf{d}} |\Gamma_R|^2$$
Incident wave

The formalism and the physical interpretation are more complicated for the case of the general lossy line, due to the complex characteristic impedance

Example – Standing Wave Patterns of a low-loss transmission line

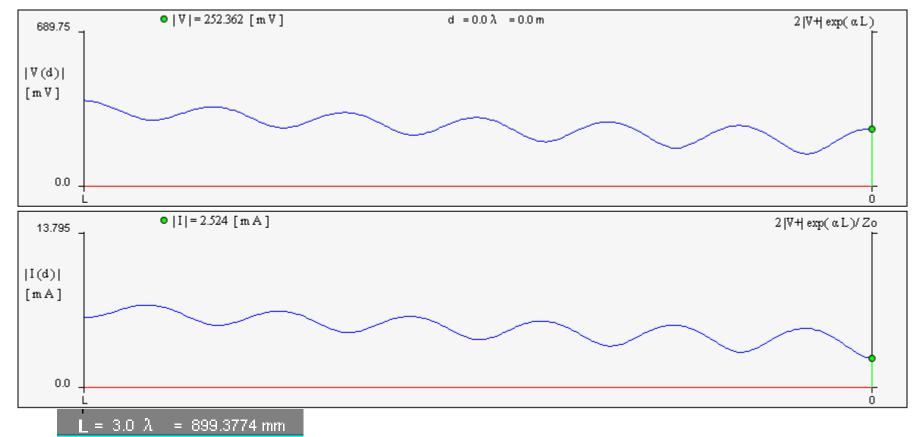
LOW-LOSS APPROXIMATION $\alpha = 0.66713$ [Ne/m] = 0.2 [Ne/ λ]

$$Z_g = 100.0 + j 0.0 \Omega$$

 $V_g = 1.0 + j 0.0 V$

$$Z_0 = 50.0 + j \ 0.0 \ \Omega$$
 $f_0 = 1.0 \ \text{GHz}$ $\epsilon_r = 1.0$ $\lambda = 299.7925 \ \text{mm}$

 $Z_{L} = 100.0 + j 0.0 \Omega$



Class wrap-up

Review of Transmission Line topics

Behavior of loss-less lines Characteristic impedance Line impedance Reflection coefficient Short and open circuited lines Standing wave patterns **Smith Chart** Impedance matching